

Absolute Multiturn Encoders

Series 5868 Series 5888

Absolute Multiturn Encoders CANLift

© Fritz Kübler GmbH

Copyright Protection

The contents of this documentation are protected by copyright © Fritz Kübler GmbH. The contents of this documentation may not be altered, expanded, reproduced nor circulated to third parties, without the prior written agreement of Fritz Kübler GmbH.

Liability to modification without notice

As a result of ongoing efforts to improve our products, we reserve the right to make changes at any time to technical information contained in the document to hand.

Warranty Disclaimer

Fritz Kübler GmbH provides no guarantee, neither tacit nor express, in respect of the whole manual (whether this applies to the original German text or to the English translation) and assumes no liability for any damage, neither direct nor indirect, however caused.

Document information

Revised 04-2006

Screen printouts used

CANalyzer[®] Fa. Vector–Informatik CANWizard[®] Fa. Böhnke & Partner

Fritz Kübler GmbH Schubertstr.47

78054 VS-Schwenningen / Germany

Tel. +49 (0) 7720-3903-0 Fax +49 (0) 7720-21564 E Mail: info@kuebler.com

E-Mail: info@kuebler.com
Internet: www.kuebler.com

R.000.000 1-2 of 41

Absolute Multiturn Encoders CANLift

Table of Contents:

1	GENERAL1-5	
	CANLIFT MULTITURN ENCODER SERIES 5868/88THE CANOPEN PROFILE	
2	CANLIFT ENCODER DEVICE PROFILE DS 417 V1.12-6	
	DATA TRANSMISSIONTRANSMISSION OF PROCESS DATA	
3	CONFIGURATION USING THE CANWIZARD®3-7	
4	INITIAL STARTUP - GENERAL DEVICE SETTINGS4-8	
(BAUD RATE	4-8
5	CANBUS CONNECTION5-9	
I	D-Sub 9 Connector Pin Assignment	5-9
6	DEFAULT SETTINGS ON DELIVERY6-10	
	COMMUNICATION PARAMETERSCANLIFT ENCODER PROFILE	
7	EXTERNAL PRESET7-12	
8	DEFINITION OF THE TRANSMISSION TYPE OF THE PDO8-13	
,	Variable PDO Mapping	8-13
9	DEFAULT TRANSMIT PDO1 MAPPING9-14	
•	Two Virtual Devices	9-14
10	APPLICATION PROGRAMMING EXAMPLE:10-15	
	SETTING THE PARAMETERS WITH THE CANWIZARD SAVE ALL CHANGED PARAMETERS IN THE EEPROM STORE PARAMETERS 1010H	10-16 <i>10-16</i>
11	OBJECT 1018H: IDENTITY OBJECT11-17	
12	2 CONFIGURATION OF THE SPEED OUTPUT12-18	
(OBJECT 6384H: ENCODER MEASURING STEP VALUES FOR THE SPEED CALCULATION	12-18
13	B EMERGENCY OBJECTS13-19	
	FORMAT OF AN EMERGENCY MESSAGE	
14	CANOPEN OBJECT DICTIONARY14-21	
,	STRUCTURE OF THE ENTIRE OBJECT DICTIONARY:	14-21
15	THE COMMUNICATION PROFILE CANOPEN PROFILE DS 301 V4.1 15-22	
	Communication Objects	
16	CANLIFT DEVICE PROFILE DS 417 V1.116-23	

Absolute Multiturn Encoders CANLift

1-4 of 41

	CAR Position Unit	
	OBJECT 6000H: SUPPORTED VIRTUAL DEVICE TYPES	
	Object 6001h: Liftnumber	
	OBJECT 6380H OPERATING PARAMETERS	
	OBJECT 6381H: MEASURING UNITS PER REVOLUTION (RESOLUTION)	
	OBJECT 6382H: PRESET VALUE	
	OBJECT 6383H: POSITION VALUEOBJECT 6390H: SPEED VALUE	
	OBJECT 6390H: ACCELERATION VALUE	
	OBJECT 033 TH. ACCELERATION VALUE OBJECT 63B0H: WORKING AREA STATE REGISTER 2 VALUES POSITION UNIT 1	
	OBJECT 63B4H: Working Area Low Limit 2 Values	
	OBJECT 62B8H: WORKING AREA HIGH LIMIT 2 VALUES	
	OBJECT 63C0H: DISPLAY OPERATING STATUS	
(OBJECT 63C1H: SINGLETURN RESOLUTION	. 16-28
	OBJECT 63C2H: NUMBER OF REVOLUTIONS	
	OBJECT 63C4H: SUPPORTED WARNINGS	
	OBJECT 63C5H: WARNINGS	
	OBJECT 63C6H: SUPPORTED ALARMS	
	OBJECT 63C7H: ALARMSOBJECT 2100H: BAUD RATE	
	OBJECT 2100H: BAUD RATEOBJECT 2101H: NODE ADDRESS	
	OBJECT 2101H. NODE ADDRESS	
	OBJECT 2102H: GANDOS TERMINATION	
	OBJECT 2130H: ENCODER MEASURING STEP	
	OBJECT 1029H ERROR BEHAVIOUR	
	OBJECTS NOT MENTIONED	
17	NETWORK MANAGEMENT17-33	
	NMT Commands	. 17-34
18	HEARTBEAT PROTOCOL18-34	
19	LED MONITORING DURING OPERATION19-35	
	LED COMBINATIONS DURING OPERATION	. 19-36
20	GENERAL RESET - SWITCHING THE DEVICE ON WITH THE SET-KEY PRESSED 20-36	
21	DEFINITIONS21-37	
	ABBREVIATIONS USED	. 21-37
22	P DECIMAL-HEXADECIMAL CONVERSION TABLE22-38	
23	3 GLOSSARY23-39	
24	INDEX24-40	
25	TECHNICAL DATA ELECTRICAL, MECHANICAL25-41	

Absolute Multiturn Encoders CANLift

1 General

Multiturn Encoder Series 5868/88

The **CANLift encoders** of Series 5868/88 support the latest CANopen communication profile according to **DS 301 V4.02**. In addition the device-specific profile **DS 417 V1.1** has been adapted **(for lift applications)**.

The following operating modes can be selected: Polled Mode, Cyclic Mode, Sync Mode and a High Resolution Sync Protocol. Moreover, scale factors, preset values, limit switch values and many other additional parameters can be programmed via the CAN-Bus. At Power ON all parameters are loaded from an EEPROM, which had previously been saved in the non-volatile memory to protect them in case of power failure. The following output values may be freely combined as **PDO** (PDO Mapping): **position, speed, acceleration** as well as the status of the four **limit switches**.

Moreover the encoders are available with **D-SUB**, **M12** or **M23** connectors, or with a **cable connection**, for which changes to the device address and baud rate are software controlled.

Three LEDs located on the back indicate the operating or fault status of the CAN bus, as well as the status of an internal diagnostic.

CANLift encoders are available in blind hollow shaft and solid shaft versions, and are ideal for use in harsh industrial environments thanks to their IP 65 protection rating.

The CANopen Profile

CANopen represents a unified user interface and thus allows for a simplified system structure with a wide variety of devices. CANopen is optimized for the fast exchange of data in real-time systems and possesses a number of different device profile that have been standardized. The CAN in Automation (CiA) manufacturers and users group is responsible for creating and standardization of the relevant profiles.

CANopen offers

- user-friendly access to all device parameters.
- auto-configuration of the network and of the devices
- device synchronization within the network
- cyclic and event-driven process data exchange
- simultaneous read and write of data

CANopen uses four communication objects (COB) with different properties

- Process Data Objects (PDO) for real-time data,
- Service Data Objects (SDO) for transmitting parameters and programs,
- Network Management (NMT, Life-Guarding, Heartbeat)
- Predefined Objects (for Synchronisation, Time-Stamp, Emergency)

All device parameters are filed in an **Object Dictionary**. This Object Dictionary contains the description, data type and structure of the parameters, as well as the address (Index).

The dictionary is divided into a communications profile section, a section covering the device profile as well as a section specific to the manufacturer.

Absolute Multiturn Encoders CANLift

2 CANLift Encoder Device Profile DS 417 V1.1

The **CANLift encoder** is designed specially to fulfil the requirements of the **Lift Industry** and meets the **CiA** specifications acc. to **DSP417**. The encoder is already pre-configured with many parameters, so offering the customer a simple plug and play option. Any necessary changes or settings for a particular application can be carried out quickly and easily via **EDS** files, using a configuration tool such as **CANWizard from BÖHNKE + PARTNER®**.

Firstly the encoder will be assigned a lift shaft by means of the parameter **Lift Number**. The objects for the device parameters will hereupon be automatically adjusted to suit. Up to 3 PDO channels are available for the communications, all of which have already been configured to the position Unit 1.

Data transmission

With CANopen data are transferred via two different communication types (COB=Communication Object) with different properties:

- Process Data Objects (PDO real-time capable)
- Service Data Objects (SDO)

The Process Data Objects **(PDO)** provide high-speed exchange of real-time data (e.g. encoder position, speed, comparative position status) with a maximum length of 8 byte. These data are transmitted with a high priority (low COB-Identifier). PDOs are broadcast messages and provide their real-time data simultaneously to all desired receivers. PDOs can be mapped, i.e. 4 byte of position and 2 byte of speed can be combined in one 8 byte data word.

The Service Data Objects **(SDO)** form the communication channel for the transfer of device parameters (e.g. programming the resolution of the encoder). As these parameters are transmitted acyclically (e.g. only once during boot-up of the network), the SDO objects have a low priority (high COB-Identifier).

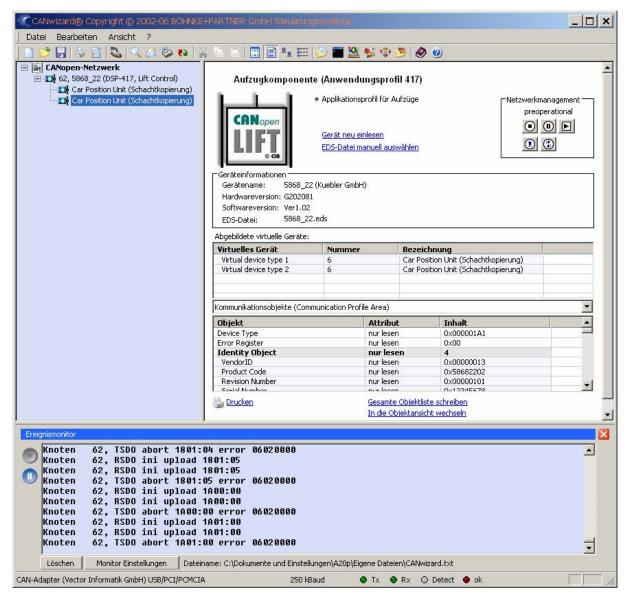
Transmission of Process Data

With the **CANLift** encoder **three PDO services** PDO1 (tx) ,PDO2 (tx) and PDO3(tx) and a **Receive-PDO** are available. A PDO transmission can be triggered by a variety of events (see Object Dictionary Index 1800h):

- **asynchronously** (event driven) by an internal cyclic device timer or by a change in the process value of the sensor data
- **synchronously** as a response to a SYNC telegram; (a SYNC command will cause all CANopen nodes to store their values synchronously, after which they are transferred in succession to the bus according to their set priority)
- as a response to an RTR-Telegram (per Remote Frame=recessive RTR-bit, exactly that message with the communicated ID will be requested)

R.000.000 2-6 of 41

Absolute Multiturn Encoders CANLift



3 Configuration using the CANWizard®

The CANWizard has a wide variety of features, specially for use with lifts, and which comply with the CiA DSP-417 application profile. The Software is part and parcel of the control concept that is designed and manufactured by the company BÖHNKE + PARTNER® GmbH.

In the upper area the **Device Name**, **the CANopen Profile** and the operating elements for the network management are displayed. There are also two links, either for reading in the device again or for manually assigning a particular **EDS file** to this device.

Below this are displayed the device information for this node and the name of the assigned EDS file. In the lower part of the window are the selection fields for the parameter assignment of the device. These are dependent on the particular device.

The encoder possesses two virtual devices, which can be configured independently of each other.

R.000.000 3-7 of 41

Absolute Multiturn Encoders CANLift

4 Initial Startup - General Device Settings

Baud rate

The default setting on delivery is **125 kbit/s**. The baud rate can however be changed from **0..9** by reprogramming in **Object 2100h** from **0..9**. The following baud rates are available to the user:

Value	Baud rate in kbit/s
0	10
1	20
2	50
3	100
4	125 ²
5	250
6	500
7	800
8	1000
9	Autobaud

² Factory default setting

Please note the following when selecting a baud rate

The chosen cycle time (see Object 1906h, Sub-index 5 Event Timer) must be longer than the bus transfer time, to ensure that the PDOs are communicated error-free!

With a baud rate of 10 KBaud: cycle time must be at least 14 ms With a baud rate of 20 KBaud: cycle time must be at least 10 ms With a baud rate of 50 KBaud: cycle time must be at least 4 ms

With a cycle time=0 in Event-Mode (i.e. PDO on value change) the baud rate must be at least **125 KBaud**.

CANbus Termination

The bus termination can be switched on using the software via **Object 2102h**. By default the value is set to 1, which means that the bus termination of the device **is switched on.**

Range of values 0..1

Default setting: 1

The CANbus must be terminated at both ends between **CAN_H** and **CAN_L** using **120 Ohm** bus termination resistors.

R.000.000 4-8 of 41

Absolute Multiturn Encoders CANLift

Node number

It is possible to change the node number by reprogramming **in Object 2101h**. If the value in Object 2101h is set to FFh, then the node number will be read from the internal switches. (Switches are set to the node number default value 10h)

Default setting 10h corresponds to 16 decimal

Node number 0 is reserved and must not be used by any node.

The resulting node numbers lie in the range 1...7Fh hexadecimal (1...127 decimal).

Please note!

No logical connection exists between the node number and the **COB-ID** of the transmit parameters, i.e. the IDs for TPDO1+2 have fixed values assigned to them.

The acceptance of a new node number only becomes effective when the encoder is rebooted (Reset/Power-on) or by means of an **NMT Reset Node** command. All other settings within the object table are however retained.

5 CANbus connection

D-Sub 9 Connector pin assignment

Abbreviation	Description	PIN No.	Colour
CG	CAN Ground	3	
CL	CAN_Low (-)	2	
СН	CAN_High (+)	7	
0V	0 Volt Supply	6	
+V	+UB Supply	9	

Connection diagram D-SUB pin assignment

M23 Connector pin assignment + cable connection

Abbreviation	Description	PIN No.	Colour
CG	CAN Ground	3	
CL	CAN_Low (-)	2	
CH	CAN_High (+)	7	
0V	0 Volt Supply	10	
+V	+UB Supply	12	

Connection diagram M23 connector and cable connection

M12 Connector pin assignment

Abbreviation	Description	_PIN No.	Colour
CG	CAN Ground	3	
CL	CAN_Low (-)	5	
CH	CAN_High (+)	4	
0V	0 Volt Supply	1	
+V	+UB Supply	2	

Connection diagram M12 connector

R.000.000 5-9 of 41

Absolute Multiturn Encoders CANLift

6 Default settings on delivery

On delivery the following software parameters have been factory set.

Description Setting		Switch	Software	
Baud rate	125 kBit/s	Switch setting 5	Object 2100h = 04h	
Node address	16	Switch setting 10h	Object 2101h = 10h	
Termination	ON	Switch setting off	Object 2102h = 01h	

Index (hex)	Name	Standard value		
	Communication parameters			
1000h	Device Type	00 (Multiple Virtual Device)		
1005h	COB-ID Sync	80h		
100Ch	Guard Time	0		
100Dh	Life Time Factor	0		
1012h	COB-ID Time stamp	100h		
1013h	High Resolution time stamp	0		
1017h	Producer heartbeat time	2500 ms		
1029h	Error Behaviour	0 = Comm Error		
		1 = Device specific		
		1 = Manufacturer Err.		
1906h	TPDO1 Communication Parameter			
01h	COB-ID	18Ch		
02h	Transmission Type	255 (asynch)		
03h	Inhibit Time	0		
05h	Event counter	20ms		
1907h	TPDO2 Communication Parameter			
01h	COB-ID	18Dh		
02h	Transmission Type	255 (asynch)		
03h	Inhibit Time	0		
05h	Event counter	20ms		
1B06h	TPDO1 Mapping			
01h	1.Mapped Object	0x63830120		
02h	2.Mapped Object	0x63900110		
03h	3.Mapped Object	0x63B00108		
1B07h	TPDO2 Mapping			
01h	1.Mapped Object	0x63830220		
02h	2.Mapped Object	0x63910110		

R.000.000 6-10 of 41

Absolute Multiturn Encoders CANLift

Index (hex)	Name	Standard value		
	CANLift Encoder Profile			
6000h	Supported Virtual Device types	06		
6001h	Lift number	1		
6380h	Operating Parameter	0x04h Scaling on		
6381h	Measuring Units per Revolution	8192 (13 Bit)		
6382h	Preset value	0		
6384H	Encoder Measuring Step			
	Position Measuring Step	1		
	Speed Measuring Step	10		
	Acceleration Measuring Step	1		
63B1h	Work area low limit	0		
63B2h	Work area high limit	33554400		
63C2h	Number of Revolutions	4096		
2100h Baud rate		04h		
2101h	Node number	10h		
2102h	CANbus terminination	0 (not active)		

The original Standard Values (default values on delivery) can be reloaded again by means of Object **1011h** (restore parameters).

In order to ensure that parameter changes are saved in the event of power failure, then these must without fail be transferred to the EEPROM by means of Object **1010h** (store parameters). This will cause all data already present in the EPROM to be over-written!

If errors have occurred during programming of the objects and if these parameters are then saved in the EEPROM, it will not be possible to address the encoder next time it is switched on (the encoder will send only **Emergency** messages).

This error can be cleared only by means of a general **Reset** of the encoder. Please note that all programmed parameters will be lost.

- Switch the encoder off
- Turn the encoder back on, keeping the Set-key* pressed for ca. 3 seconds until the DIAG LED flashes
- Switch the device off again.

When the encoder is **rebooted** all values will be reset to their default settings, in exactly the same way as sending **Object 1011h Restore Parameters**.

R.000.000 6-11 of 41

Absolute Multiturn Encoders CANLift

7 External Preset

The device can be set to the **preset value** by means of the built-in SET key. The resulting position is dependent on the value programmed in **Object 6382h**.

Default setting: 0

as per illustration

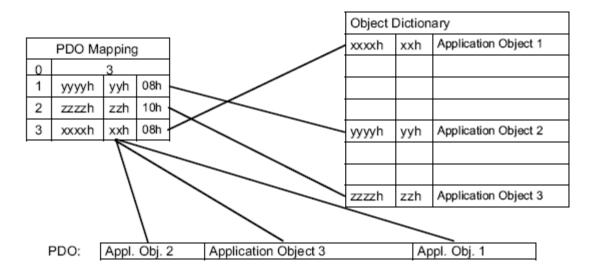
R.000.000 7-12 of 41

Absolute Multiturn Encoders CANLift

8 Definition of the transmission type of the PDO

PDO transmission					
cyclic acyclic synchronous asynchronous F				RTR only	
	X	X			
X X					
- reserved -					
x :				Х	
			X	Х	
			X		
			X		
	cyclic	cyclic acyclic	cyclic acyclic synchronous X X X	cyclic acyclic synchronous asynchronous X X X	

A value between 1 ...240 means that the PDO will be sent **synchronously and cyclically**. The number of the Transmission Type signifies the **quantity of SYNC** pulses that are necessary to forward the PDOs. The Transmission Types 252 and 253 state that the PDO will only be sent when requested via an RTR.


Type 254 means that the event will be triggered depending on the application (application-specific), whereas Type 255 is dependent on the device (device-specific). Additionally for Numbers 254/255 a time-controlled **EventTimer** can be used. The values for the timer can range from **1ms** ... **65535 ms**.

Variable PDO Mapping

Variable Mapping of the various objects means that the user is able to configure the content of the Transmit PDOs dependent on the application.

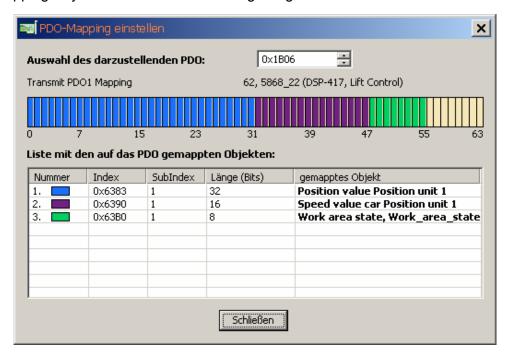
Example of an entry in the Mapping Table:

The mapped PDO consists of 3 Application Object entries of varying lengths:

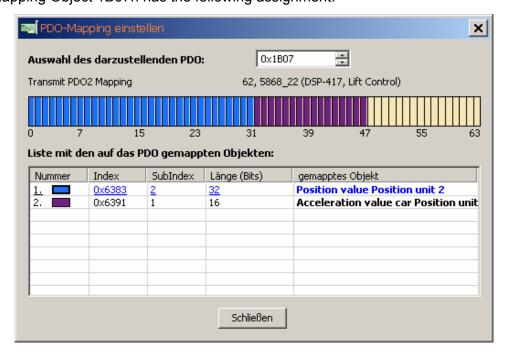
Application Object 2 occupies Byte 1 (08h) in the Transmit PDO. Thereafter follows Application Object 3 with a length of 16 bit (10h = 2 bytes) and finally Application Object 1 with a length of 1 byte. In total, 32 bits are occupied in this PDO.

R.000.000 8-13 of 41

Absolute Multiturn Encoders CANLift



9 Default Transmit PDO1 Mapping


Two Virtual Devices

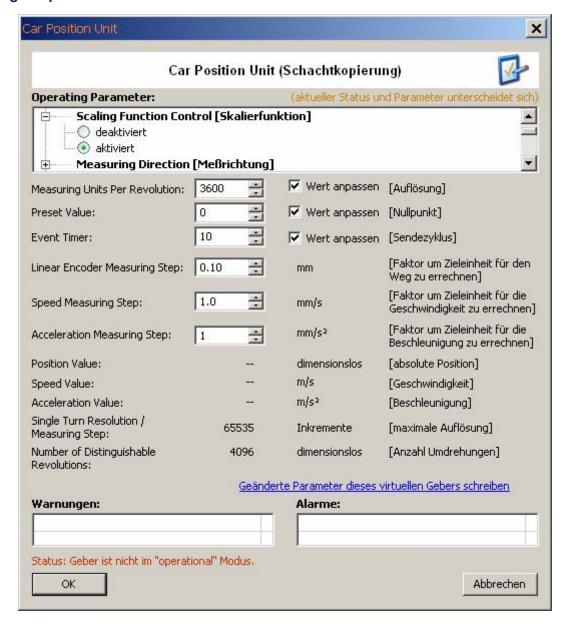
The Mapping Object for **Transmit PDO 1 and PDO2** is defined in the Object Dictionary Indexes **1B06h** and **1B07**h. It consists of 2 entries and can be modified by the user (variable mapping). A pre-defined mapping exists for the **first virtual device**.

TPDO1 Mapping Object 1B06h has the following assignment:

A pre-defined mapping exists for the **second virtual device**. TPDO2 Mapping Object 1B07h has the following assignment:

R.000.000 9-14 of 41

Absolute Multiturn Encoders CANLift

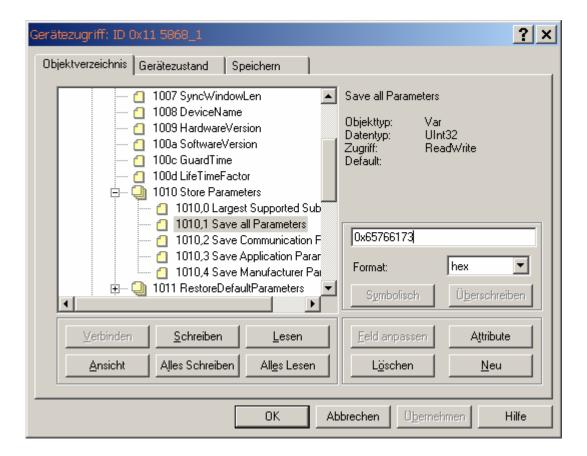


10 Application Programming Example:

Requirements:

- Resolution per revolution should be set to 3600 steps per revolution
- Position Value should be set to 0
- TPDO1 (Position) should transmit the event every 10 ms
- The new parameters should be saved in the EEPROM

Setting the parameters with the CANwizard



Additionally a time-controlled **EventTimer** can be used for the Transmit PDOs. The values for the timer can range from **1 ms** ... **65535 ms**.

Absolute Multiturn Encoders CANLift

Save all changed parameters in the EEPROM Store Parameters 1010h

Object 1010h Store Parameters

Using the command "save" under Sub-Index 1h (Save all Parameters) causes all the parameters to be stored in the non-volatile memory (EEPROM).

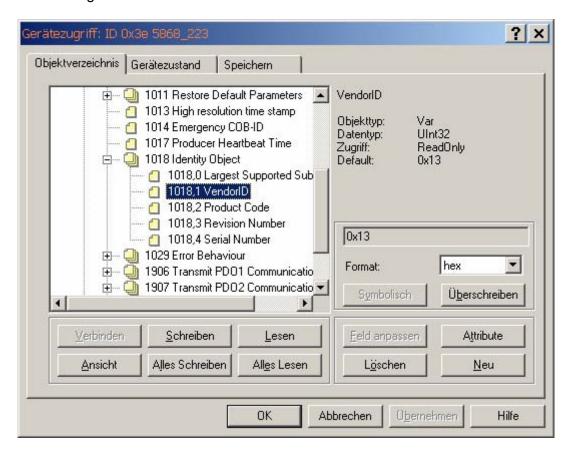
All Communication Objects, Application Objects and Manufacturer-specific Objects are saved under this Sub-Index. This process requires ca. 14 ms.

In order to prevent an inadvertent save, the instruction will only be executed if the string "save" is entered as a codeword into this Sub-Index.

A read access to the Sub-Index 1h provides information about the functionality of the memory.

Byte 0: 73h (ASCII-Code for "s") Byte 1: 61h (ASCII-Code for "a") Byte 2: 76h (ASCII-Code for "v") Byte 3: 65h (ASCII-Code for "e")

Object 1011h: Load Standard Values


Using the command "load" under Sub-Index 1h causes all parameters to be reset to their standard values. In order to prevent inadvertent loading of the standard values, the instruction will only be executed if the string "load" is entered as a codeword into this Sub-Index.

Absolute Multiturn Encoders CANLift

11 Object 1018h: Identity Object

Information concerning the vendor and the device:

1018 RECORD Device - Identification read only

Sub-Index 0h: Number of Sub-indices"

supplies the value 4

Sub-Index 1h: "read" only

supplies the Vendor-ID (00000013h) Fritz Kübler GmbH

Sub-Index 2h: supplies the Product Code

(e.g. 0x58682001 CANopen encoder)

Sub-Index 3h: "read" only

supplies the Software revision Number

(e.g. 102)

Sub-Index 4h: "read" only

supplies the 8-digit Serial Number of the encoder

Absolute Multiturn Encoders CANLift

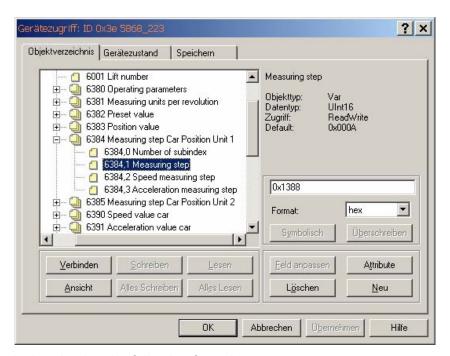
12 Configuration of the speed output

The speed of the encoder shaft is calculated as the difference in values between two physical (unscaled) position values with a dynamic time interval of 1ms, 10 ms or 100ms.

In order that the speed calculation can be adapted to the application in question, the user has available to him 2 configurable objects in the manufacturer-specific area. At high rotation speeds the integration period of the respective measurement can be reduced, in order to create correspondingly high dynamics. The number of average values can have a particular influence on the measurement dynamics and must be calculated specifically to the application.

Accuracy of the speed measurement

The measurement accuracy is largely dependent on the following parameters:


- actual speed
- programmed resolution/ revolution of the encoder (Object 6381h,1)
- programmed number of average values

(Object 2130h,1)

temporary change of speed

(momentum)

Object 6384h: Encoder Measuring step Values for the speed calculation

The speed is calculated using the following formula:

A parameter under **Object 6384,sub2** Speed Measuring Step is available as a multiplier for a unit factor. Enter under **Object 2130,sub1** Speed Average Value the number of measured values needed to create the moving average of the speed. The maximum range of values is 1...32. The speed output occurs either as **RPM** or as the **number of steps per second**. Using the parameter **Object 6384,sub1** Position Measuring Value, it is possible for example to specify the circumference of a measuring wheel, in order to output the position, e.g. in mm.

R.000.000 12-18 of 41

Absolute Multiturn Encoders CANLift

13 Emergency Objects

Emergency Objects arise with error situations within a CAN network and are triggered depending on the event and transmitted over the bus with a **high priority**.

Important: an Emergency Object is only triggered once per "Event". No new object is generated while the error still exists. Once the error is eliminated, then a new Emergency Object with the content 0 (Error Reset or No Error) is generated and transmitted over the bus.

The table shows the error codes supported - highlighted in red

Error Code (hex)	Meaning
00xx	Error Reset or No Error
10xx	Generic Error
20xx	Current
21xx	Current, device input side
22xx	Current inside the device
23xx	Current, device output side
30xx	Voltage
31xx	Mains Voltage
32xx	Voltage inside the device
33xx	Output Voltage
40xx	Temperature
41xx	Ambient Temperature
42xx	Device Temperature
50xx	Device Hardware
60xx	Device Software
61xx	Internal Software
62xx	User Software
63xx	Data Set
70xx	Additional Modules
80xx	Monitoring
81xx	Communication
8110	CAN Overrun (Objects lost)
8120	CAN in Error Passive Mode
8130	Life Guard Error or Heartbeat Error
8140	recovered from bus off
8150	Transmit COB-ID collision
82xx	Protocol Error
8210	PDO not processed due to length error
8220	PDO length exceeded
90xx	External Error
F0xx	Additional Functions
FFxx	Device specific

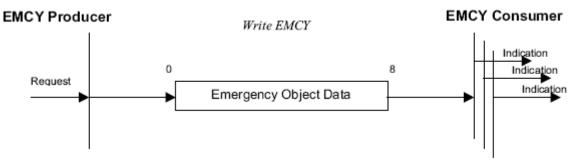
R.000.000 13-19 of 41

Absolute Multiturn Encoders CANLift

Format of an Emergency Message

Byte	0	1	2	3	4	5	6	7
Content	0 1 Emergency Error Code (see Table 21)		Error register (Object 1001H)	ľ	Manufactur	er specific	Error Field	i

Figure 34: Emergency Object Data


Example of an over-temperature message:

Transfer Data 00 42 09 80 56 2	0 50 2E
--------------------------------	---------

[Errcode] 420	Of Temperature threshold value of the sensor exceeded
[Error Register] 09	Error Register
[ManufacturerSpecific1] 80	ICLG error register
[ManufacturerSpecific2] 56	ICLG instantaneous temperature
[ManufacturerSpecific3] 20	ICLG current threshold lower range
[ManufacturerSpecific4] 50	ICLG current threshold upper range
[ManufacturerSpecific5] 2E	ICLG versions register

Emergency Object Protocol

An "unconfirmed" Service message is defined

The behaviour in the case of an error is described in Object 1029h Error Behaviour

R.000.000 13-20 of 41

Absolute Multiturn Encoders CANLift

14 CANopen Object Dictionary

Die Beschreibung der Objektverzeichnis-Einträge ist folgendermaßen aufgebaut:

Index (hex) Su	Sub-Index (hex) Objekt	Name	Тур	Attr.	M/0	
----------------	------------------------	------	-----	-------	-----	--

Index: 16 Bit-Adresse des Eintrages Sub-Index: 8 Bit-Zeiger auf Untereintrag;

wird nur bei komplexen Datenstrukturen (z.B. Record, Array) verwendet;

wenn kein Untereintrag vorhanden: Sub-Index=0

Objekt: NULL Eintrag ohne Daten

DOMAIN größere variable Datenmenge, z.B. Programmcode

DEFTYPE Definition der Datentypen, z.B. boolean, float, unsigned 16 usw.
DEFSTRUCT Definition eines Record-Eintrages, z.B. PD0 Mapping Struktur
VAR einzelner Datenwert, z.B. boolean, float, unsigned 16, string usw.

ARRAY Feld mit gleichartigen Daten, z.B. unsigned16 Daten

RECORD Feld mit beliebig gemischten Datentypen

Name: kurze Beschreibung der Funktion

Typ: Datentyp, z.B. boolean, float, unsigned16, integer usw.

Attr.: Attribut gibt Zugriffsrechte auf das Objekt an:

rw Schreib- und Lesezugriff

ro nur Lesezugriff

const nur Lesezugriff, Wert ist eine Konstante

M/O M Mandatory: Objekt muss im Gerät implementiert sein

O Optional: Objekt muss nicht im Gerät implementiert sein

Structure of the entire Object Dictionary:

Index (hex)	Object
0000	unused
0001 - 001F	static date types
0020 - 003F	complex data types
0040 - 005F	manufacturer-specific data types
0060 - 0FFF	reserved
1000 - 1FFF	Communication Profile
2000 - 5FFF	Manufacturer-specific Profile
6000 - 9FFF	Standardized Device Profile
A000 - FFFF	reserved

R.000.000 14-21 of 41

Absolute Multiturn Encoders CANLift

15 The Communication Profile CANopen Profile DS 301 V4.1

Communication Objects

INDEX (hex)	OBJECT SYMBOL	ATTRIB	Name	M/O	TYPE
1000	VAR	CONST	Device Type	М	Unsigned32
1001	VAR	RO	Error Register	M	Unsigned8
1002	VAR	RO	Manufacturer Status	0	Unsigned32
1003	RECORD	RO	Predefined Error Field	0	Unsigned32
1004	ARRAY	RO	Number of PDO supported	0	Unsigned32
1005	VAR	RW	COB-ID Sync message	0	Unsigned32
1006	VAR	RW	Communication cycle period	0	Unsigned32
1007	VAR	RW	synchr.window length	0	Unsigned32
1008	VAR	CONST	Manufacturer Device Name	0	visible string
1009	VAR	CONST	Manufacturer Hardware Version	0	visible string
100A	VAR	CONST	Manufacturer Software Version	0	visible string
100B	VAR	RO	Node-ID	0	Unsigned32
100C	VAR	RW	Guard Time	0	Unsigned32
100D	VAR	RW	LifeTime Factor	0	Unsigned32
1010	VAR	RW	Store parameters (Device Profile)	0	Unsigned32
1011	VAR	RW	Restore parameters (Device Profile)	0	Unsigned32
1012	VAR	RW	COB-ID Time stamp	0	Unsigned32
1013	VAR	RW	High resolution time stamp	0	Unsigned32
1014	VAR	RO	Emergency COB_ID	0	Unsigned32
1017	VAR	RW	Producer Heartbeat time	0	Unsigned16
1018	RECORD	RO	Identity Object	M	PDOComPar
1029	ARRAY	RW	Error Behaviour	0	Unsigned8
1906	RECORD		1 st transmit PDO Comm. Par.	0	PDOComPar
1907	RECORD		2 nd transmit PDO Comm. Par.	0	PDOComPar
1B06	ARRAY		1 st transmit PDO Mapping Par.	0	PDOMapping
1B07	ARRAY		2 nd transmit PDO Mapping Par.	0	PDOMapping

Manufacturer-specific Objects

2100	VAR	RW	Baud Rate	0	Unsigned 8
2101	VAR	RW	Node number	0	Unsigned 8
2102	VAR	RW	CAN Bus Termination	0	Unsigned 8
2103	VAR	RO	Firmware Flash Version	0	Unsigned16
2110	VAR	RO	Sensor Configuration Structure	0	Unsigned8
2120	Array	RW	Sensor Test Data	0	Unsigned8
2130	Array	RW	Calculation Measuring Value	0	Unsigned16

R.000.000 15-22 of 41

Absolute Multiturn Encoders CANLift

16 CANLift Device Profile DS 417 V1.1

CAR Position Unit

The virtual device "CAR Position Unit" measures the current position of the lift car and also provides the speed, acceleration and limit switch values.

This information is needed primarily by the drive.

The table contains the available objects for the CAR Position Unit in the CANLift protocol. A

The Object data always relate to Position Unit 1 in Subindex 01h or to Position Unit 2 in Subindex 02h. If the parameters of the two virtual devices differ, then this will be referred to specifically.

Subindex 00h indicates the number of entries.

maximum of 4 units can be implemented.

INDEX (hex)	Object Symb.	ATTRIB	Name	M/O C2	TYPE
6000	ARRAY	RW	Supported Virtual Device Types	M	Unsigned16
6001	VAR	RW	Lift number	M	Unsigned8
6381	ARRAY	RW	Measuring Units per Revolution	M	Unsigned32
6382	ARRAY	RW	Preset value	M	Unsigned32
6383	ARRAY	RO	Position value	M	Unsigned32
6384	ARRAY	RO	Measuring Step CAR Pos Unit1	0	Unsigned16
6385	ARRAY	RO	Measuring Step CAR Pos Unit2	0	Unsigned16
6390	ARRAY	RO	Speed Value	0	Unsigned16
6391	ARRAY	RO	Acceleration Value	0	Signed16
63B0	ARRAY	RO	Working Area state	0	Unsigned 8
63B4	ARRAY	RW	Working Area Low Limit Unit1	0	Unsigned32
63B8	ARRAY	RW	Working Area High Limit Unit1	0	Unsigned32
63C0	ARRAY	RO	Operating Status	M	Unsigned16
63C1	ARRAY	RO	Measuring Step (Singleturn)	M	Unsigned32
63C2	ARRAY	RW	Number of revolutions	M	Unsigned16
63C4	ARRAY	RO	Supported warnings	M	Unsigned16
63C5	ARRAY	RO	Warnings	M	Unsigned16
63C6	ARRAY	RO	Supported alarms	M	Unsigned16
63C7	ARRAY	RO	Alarms	M	Unsigned16
63C8	ARRAY	RO	Operating time	М	Unsigned32
63C9	ARRAY	RO	Offset value (calculated)	M	Signed32
63D0	ARRAY	RO	Module Identification Unit1	M	Unsigned32
62D1	ARRAY	RO	Module Identification Unit2	M	Unsigned32

VAR = Variable
ARRAY = Variable Array
RW = Read/Write
RO = Read only
const = Constants
Name = Object Name

M/O = Mandatory or Optional

R.000.000 16-23 of 41

Absolute Multiturn Encoders CANLift

Object 6000h: Supported virtual device types

This Object contains the number of virtual devices that are implemented in one physical device. 2 virtual devices are implemented.

Data content Subindex 00h -> 2 number of virtual devices

Byte 0	Byte 1
27 20	2 ¹⁵ 2 ⁸

Value Subindex 01h: 0600h CAR Position Unit 1 (see Device Type)
Value Subindex 02h: 0600h CAR Position Unit 2 (see Device Type)

With several virtual devices this Object is implemented and shows the number and type of the devices. For this reason in Object 1000h a 00h is programmed for Virtual Device Code.

Object 6001h: Liftnumber

This Object contains the currently assigned Lift number.

Data content:

Range of values 1 ...80h (see table Device Profile.) **Default setting: 01h**

Object 6380h Operating Parameters

The parameters for the type of operation are set and saved here.

Bit 0: Code sequence: 0 = increasing when turning clockwise (cw)

1 = increasing when turning counter-clockwise (ccw)

Bit 2: Scaling function: 0 = disable, 1 = enable; Standard: Bit = 0 (see Object 6381h)

Bit 14: Startup Mode: 0 = Bootup after Pre-Operational, 1 = Bootup after Operational

Bit15: Event Mode: 0 = Position output acc. to TPDO 1906h, 1 = output on each change of

position

Data content Subindex 00h -> Number of entries

Byte 0	Byte 1
2 ⁷ 2 ⁰	2 ¹⁵ 2 ⁸

R.000.000 16-24 of 41

Absolute Multiturn Encoders CANLift

Bit	Function	Bit = 0	Bit =1	C1	C2
0	Code sequence	CW	CCW	m*	m*
1	Commissioning Diagnostic Control	Disabled	Enabled	0	0
2	Enable scaling	Disabled	Enabled	0	m
3	Measuring direction	Forward	Reverse	0	0
411	Reserved for further use				
12	Manufacturer specific parameter	N.A.	N.A.	0	0
13	Manufacturer specific parameter	N.A.	N.A.	0	0
14	Startup automatic in OP-Mode	Disabled	Enabled	0	0
15	Event Mode Position	Disabled	Enabled	0	0

*m = Function must be supported o = optional

Default setting: all Bits = 0

Bit 2 = 1 Scaling enabled

Object 6381h: Measuring Units per Revolution (Resolution)

This parameter configures the desired resolution per revolution. The encoder itself then internally calculates the appropriate scale factor. The calculated scaling factor MURF (by which the physical position value will be multiplied) is worked out according to the following formula:

MURF = Measuring steps per revolution (Object 6381h) /phys. resolution Singleturn (Object 63C1h)

Data content:

Byte 0	Byte 1	Byte 2	Byte 3
27 20	2 ¹⁵ 2 ⁸	2 ²² 2 ¹⁶	2 ³¹ 2 ²⁴

Range of values:

1....maximum physical resolution (65536) 16-bit

Default setting: 8192 (13-bit)

Object 6382h: Preset Value

The position value of the encoder will be set to this preset value.

This allows, for example, for the encoder's zero position to be compared with the machine's zero position.

Data content:

Byte 0 Byte 1		Byte 2	Byte 3	
27 20	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ²⁴	

Range of values:

1....maximum physical resolution (268435456) 28-bit

Default setting:

0

R.000.000 16-25 of 41

Absolute Multiturn Encoders CANLift

Object 6383h: Position Value

The encoder transmits the current position value (adjusted possibly by the scaling factor)

Byte 0	Byte 1	Byte 2	Byte 3
27 20	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ²⁴

Range of values: 1.... maximum physical resolution (268435456) 28-bit

Object 6390h: Speed Value

The encoder transmits the current calculated speed (possibly with scaling factor) as a 16-bit value. The speed is dependent on the **settings of Object 6384h**. These values affect the calculation and the result.

Byte 0	Byte 1	
27 20	2 ¹⁵ 2 ⁸	

Range of values: 0....maximum speed 15000 RPM

With values greater than 12000 RPM a warning message will be sent and the Warning Bit "Overspeed Bit 0" in the Object Warnings 6505h will be set.

Object 6391h: Acceleration Value

The encoder outputs the current calculated acceleration (correctly signed) as a signed 16-bit value. The acceleration is calculated from the changes in speed and is thus also indirectly dependent on the **settings of Object 2130h**. These values affect the calculation and the result.

Byte 0	Byte 1	
27 20	215 28	

Range of values: 0.... +/- maximum acceleration

Negative values signify a negative acceleration (the speed drops)

An average acceleration **a** is the time change of the speed **v** and can thus be described formally as the derivative speed with respect to time **t**; here an **average** acceleration is calculated from the difference of the speeds Δv at 2 different points in time Δt (t2-t1).

 $a = \Delta v / \Delta t$ or a = v2 - v1 / t2 - t1

R.000.000 16-26 of 41

Objekt 63B0h: Working Area State Register 2 Values Position Unit 1

This Object contains the current state of the encoder position with respect to the programmed limits. The flags are either set or reset depending on the position of both limit values. The comparison with both limit values takes place in "real time" and can be used for real-time positioning or for limit switching.

	Work_area_state					
Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					
	smaller than LowLimit2 larger than outside smaller than LowLimit2 range2 LowLimit1 larger than LowLimit1 range1					

Range of values 8-bit Data content see Bit 0...7

Both limit values Object 6401h and 6402h must be checked to ensure that the output signals are correctly activated!

Object 63B4h: Working Area Low Limit 2 Values Object 62B8h: Working Area High Limit 2 Values

These two parameters configure the working area. The state inside and outside this area can be signalled by means of Flag bytes (**Object 63B0h Working Area State**). These area markers can also be used as software limit switches.

Data content:

Byte 0	Byte 1	Byte 2	Byte 3
27 20	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ²⁴

Range of values: 1....maximum physical resolution (268435456) 28-bit

Default setting: 33554432 (25-bit) Working Area High Limit 0 Working Area Low Limit

R.000.000 16-27 of 41

Absolute Multiturn Encoders CANLift

Object 63C0h: Display Operating Status

This Object displays the status of the programmed settings of Object 6380h.

Byte 0	Byte 1
27 20	215 28

Data content: see Object 6380h

Object 63C1h: Singleturn resolution

The Object shows the maximum value of the resolution of the encoder

Data content:

Byte 0	Byte 1	Byte 2	Byte 3
27 20	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ²⁴

Value: 65535 (16-bit)

Object 63C2h: Number of Revolutions

This Object can be used to programme the **number of revolutions**, which the multiturn encoder should count. The value depends on the encoder type and any value from 1..4096 (12-bit) can be accommodated. This programmed value only affects the number of revolutions. It does not affect the resolution.

Data content:

Byte 0	Byte 1	
00	10h	

Range of values: 1... 4096 or 1... 1000h

Default setting 1000h corresponds to 4096

Object 63C4h: Supported Warnings

This Object is used to display which warning messages are supported by the encoder (see Object 63C5h).

Data content:

Byte 0	Byte 1	
27 20	215 28	

Range of values: see Object 63C5h
The warning is supported when the bit is set to 1

R.000.000 16-28 of 41

Object 63C5h: Warnings

Warning messages show that the tolerances of the internal encoder parameters have been exceeded. With a warning message – unlike with an alarm message or emergency message – the measured value can still be valid. The corresponding warning bit will be set to 1 for as long as the tolerance is exceeded or the warning applies.

Data content:

Byte 0	Byte 1	
27 20	2 ¹⁵ 2 ⁸	

Bit No.	Description	Value = 0	Value = 1
Bit 0	Overspeed	none	exceeded
Bit 1	Not used		
Bit 2	Watchdog Status	System OK	Reset carried out
Bit 3	Operating time	Below < 100000h	> 100000h
Bit 415	Not used		

When Bit 0 is active then simultaneously an emergency message (ID=80h+node number) with the **Error code 4200h (**Device specific) is sent.

When Bit 2 or 3 is active then simultaneously an emergency message (ID=80h+node number) with the **Error code 5200h** (Device Hardware) is sent.

Object 63C6h: Supported Alarms

This Object is used to display which alarm messages are supported by the encoder (see Object 63C7h).

Data content:

Byte 0	Byte 1	
27 20	2 ¹⁵ 2 ⁸	

Range of values: see Object 63C7h

The alarm message is supported when the bit is set to 1

Example:

Bit 0 = 1 Position error display is supported

R.000.000 16-29 of 41

Object 63C7h: Alarms

In addition to the errors that are signalled via emergency messages, Object 63C7h provides for further error messages. The corresponding error bit is set to 1 for as long as the error condition applies.

Data content:

Byte 0	Byte 1
27 20	2 ¹⁵ 2 ⁸

Bit No.	Description	Value = 0	Value = 1
Bit 0	Position error	Position value valid	Position error
Bit 1	Hardware check	No error	Error
Bit 215	Not used		

If an error occurs, then in both cases an emergency message (ID=80h+node number) with the error code 1000h (Generic error) is sent.

Object 2100h: Baud rate

This Object is used to change the baud rate via software. The default setting is **04h** (**125 KBit/s**). If the value is set between 1..9 and the parameter saved, then on the next Power ON or with a reset node, the device will boot up with the **modified baud rate**.

Data content:

Range of values 1 ...9 (see Table)

Default setting: 04h

If the Transmission Type 254 is used for the PDO (asynchronous event-driven, see Object 1800h), then the selected cycle time (1906h,Subindex 5) should be greater than the bus transfer time, so that the PDOs can be communicated error-free!

R.000.000 16-30 of 41

Absolute Multiturn Encoders CANLift

Object 2101h: Node address

This Object can be used to change the node address via software. The default value is set to 10h (CANLift Default).

Data content:

Byte 0
27 20

Range of values 1 ...127 or 1..7Fh

Default setting: 10h

The **node number 0** is reserved and may not be used by any node. The resulting node numbers lie in the range **1...7Fh** hexadecimal or (1...127)

The acceptance of a new node number only becomes effective when the encoder is rebooted (Reset/Power-on) or by means of an **NMT Reset Node** command. All other settings within the object table are however retained.

Object 2102h: CANbus Termination

This Object can be used to set the bus termination via software.By default the value is **set to 1**, which means that the hardware setting for the bus termination has priority.

Range of values 0..1

Default setting: 1

Please note that when software termination is selected, then the hardware settings are non-operative and vice versa.

Object 2103h: Firmware Flashversion

This object is used to display the current firmware version as a 16-bit hexadecimal value. This value serves to verify that the device is to the latest revision.

Byte 0	Byte 1
27 20	2 ¹⁵ 2 ⁸

Range of values: to FFFFh

Example: 4FA6h current firmware

R.000.000 16-31 of 41

Absolute Multiturn Encoders CANLift

Object 2130h: Encoder Measuring Step

This Object is used to govern how the speed output occurs. Under **Object 2130,sub2** Speed Measuring Step, a parameter is provided as the multiplier for a unit factor. Under **Object 2130,sub3** Speed Average Value, the number of measured values required to create the moving average is entered. The maximum range of values is 1...32. The speed output occurs either as **RPM** or as the number of **steps per second**.

Using the parameter **Object 2130,sub1** Position Measuring Value it is possible, for example, to specify the circumference of a measuring wheel so that the position can be read out in mm.

Data content:

Byte 0	Byte 1
27 20	2 ¹⁵ 2 ⁸

Range of values : see table

2130h Sub 1 Position Measuring Value Default setting : 1
2130h Sub 2 Speed Measuring Step Default setting : 1
2130h Sub 3 Speed average value Default setting : 10

Object 1029h Error Behaviour

If a serious error is detected, then the device should automatically switch to **Pre-Operational** mode. The settings in this Object can be used to determine how the device is to behave when an error arises. The following error classes are covered.

1029h, Subindex 1 Communication Errors

- Bus Off state of the CAN interface
- Life guarding event has occurred
- · Heartbeat monitoring has failed

1029h, Subindex 2 Device Profile Specific

- Sensor error and Controller error
- Temperature error

The value of the Object classes is put together as follows:

Byte 0

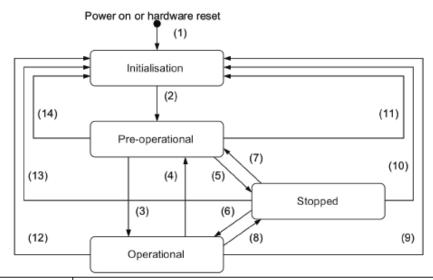
Range of values: 8-bit

- 0 Pre-Operational Mode (only if Operational Mode was active before)
- 1 no change of mode
- 2 Stopped Mode
- 3 .. 127 reserved

Objects not mentioned

All Objects not mentioned here serve as additional information and can be found in the CANLift Profile.

R.000.000 16-32 of 41


Absolute Multiturn Encoders CANLift

17 Network Management

The encoder supports the simplified Network Management as defined in the profile for "minimum capability devices" (minimum boot up).

The following function state diagram acc. to DS 301 shows the various node states and the corresponding network commands (controlled by the Network Master via NMT services):

(1)	At Power on the NMT state initialisation is entered autonomously
(2)	NMT state Initialisation finished - enter NMT state Pre-operational automatically
(3)	NMT service start remote node indication or by local control (self-starting)
(4),(7)	NMT service enter pre-operational indication
(5),(8)	NMT service stop remote node indication
(6)	NMT service start remote node indication
(9),(10),(11)	NMT service reset node indication
(12),(13),(14)	NMT service reset communication indication

Initialization: this is the initial state after the power supply is applied, following a device Reset or Power ON. The node automatically enters the Pre-operational state once it has run through the Reset and Initialization routines. The LEDs display the momentary status.

Pre-operational: The CAN node can now be addressed via SDO messages or with NMT commands under the standard identifier. Then follows the programming of the encoder or communication parameters.

Operational: The node is active. Process values are transmitted over the PDOs. All NMT commands can be evaluated.

Prepared or **Stopped:** In this state the node is no longer active, which means that neither SDO nor PDO communications are possible. The node can be set to either the Operational or Pre-operational state by means of NMT commands.

R.000.000 17-33 of 41

Absolute Multiturn Encoders CANLift

NMT Commands

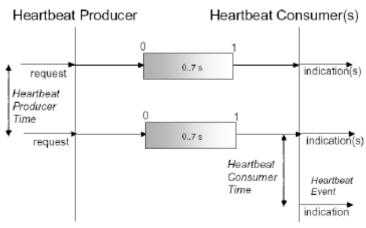
All NMT commands are transferred as an unconfirmed NMT Object. Because of the broadcast (network-wide) communication model, the NMT commands are recognized by each station.

An NMT Object is structured as follows:

Byte 0	Byte 1
27 20	2 ¹⁵ 2 ⁸

COB-ID = 0

Byte 0 = Command byte Byte 1 = Node number


The COB-ID of the NMT Object is always 0

The node is addressed via the node numbers. With node number 0 all nodes are addressed. .

Kommandobyte (hex)	Beschreibung
01h Start_Remote_Node: Wechsel zu Operational	
02h Stop_Remote_Node: Wechsel zu Prepared	
80h	Enter_Pre-Operational_State: Wechsel zu Pre-operational
81h	Reset_Node: Reset Knoten¹
82h	Reset_Communication: Reset Kommunikation²

¹ On Power ON all the parameters in the whole Object Dictionary will have their values set.

18 Heartbeat Protocol

Nowadays as an alternative to **Node Guarding** the modern **Heartbeat Protocol**should be used. The protocol is activated if a value > 0 is written to **Object 1017h** Producer Heartbeat Time.

A "Heartbeat—Producer" cyclically transmits this Heartbeat message. One or more "Heartbeat-Consumer(s)" can receive this Heartbeat message.

If the cyclic transmission of this Heartbeat message is missing, then a "Heartbeat Event" is generated. The behaviour in the case of an error is defined in Object 1029h Subindex 1 "Communication Error".

R.000.000 18-34 of 41

² On Power ON only the parameters in the section Communication Profile of the Object Dictionary will have their values set.

Absolute Multiturn Encoders CANLift

19 LED Monitoring during operation

green LED = BUS status

red LED = ERR display

yellow LED = Diagnostics

Annunciator	LED	Description	Cause of error	Addendum
Bus OFF		No connection to the Master	Data transmission line break Incorrect baud rate Inverted data line	Observe combination with ERR LED If ERR LED is also OFF, please check power supply
Bus flashing ca. 250ms		Connection to Master Pre-operational state		SDO communication
Bus flashing ca. 1sec		Connection to Master Stopped state		SDO communication not possible Only NMT commands
Bus ON		Connection to Master Operational state		PDO Transfer is active
ERR OFF		Device working normally		Observe combination with BUS LED
ERR flashing		Connection to Master interrupted	Combination with BUS status	BUS LED green, flashing or ON - is dependent on Object 1029h Error Behaviour
ERR ON		BUS OFF Status	Short circuit on the Bus or Incorrect baud rate	
DIAG OFF		Device working normally		Observe combination with BUS status
DIAG flashing		Internal error Over-temperature Sensor monitoring Single bit function error Sensor LED current monitoring		BUS LED green, flashing or ON is dependent on Object 1029h Error behaviour

The individual LED annunciators can of course also occur in combinations.

R.000.000 19-35 of 41

Absolute Multiturn Encoders CANLift

LED combinations during operation

Annunciators	LED	Description	Cause of error	Addendum
BUS+Diag flashing		Yellow and green LEDs flashing Yellow LED flashes faster	Over-temperature Sensor monitoring Single bit function error Sensor LED current monitoring	Device in Pre-Operational Mode Analyze Emergency Message
ERR+Diag flashing		Red and yellow LEDs flashing Yellow LED flashes faster	Over-temperature Sensor monitoring Single bit function error Sensor LED current monitoring	Device without CANbus Connection to master interrupted + additional causes of error

Error Display after switching on

Annunciators	LED	Description	Cause of error	Addendum
ERR +Diag flashing	0	Alternate fast flashing of yellow and red LEDs	Data connection fault to sensor Sensor faulty	Return device to manufacturer for servicing
ERR flashing		Connection to Master interrupted		No CANbus availability
Bus +Diag flashing	0	Alternate flashing of yellow and red LEDs	Data connection fault to EEPROM EEPROM faulty	Return device to manufacturer for servicing

20 General RESET - Switching the device on with the SET-Key pressed

Annunciator	LED	Description	Cause of error	Addendum
ERR +Diag flashing		Yellow LED flashes quickly Red LED flashes more slowly	Diagnostic mode	Device is ready for diagnostics

- · Switch the encoder off
- Turn the encoder back on, keeping the Set-key pressed for ca. 3 seconds; the yellow LED flashes.
- Switch the device off again.

When the encoder is **rebooted** all values will be reset to their default settings, in exactly the same way as sending Object 1011h Restore Parameters.

R.000.000 20-36 of 41

Absolute Multiturn Encoders CANLift

21 Definitions

Explanation of Symbols:

This symbol highlights those parts of the text to which particular attention must be paid. This is to ensure correct usage and to eliminate danger.

This symbol provides important advice concerning the proper handling of the encoder. Non-observance of this advice can lead to malfunctions of the encoder or in the vicinity.

This symbol refers to a special characteristic

Factory default setting of the parameters

Abbreviations used

CAN Application Layer. Application layer (layer 7) in the CAN Communication Model

CAN Controller Area Network

CAN in Automation. International Association of Users and Manufacturers of CAN

products

CMS CAN Message Specification. Service element of CAL

COB Communication Object. Transport unit in the CAN network (CAN message). Data will be

sent over the network within a COB.

COB-ID COB-Identifier. Unique identifier of a CAN message. The identifier defines the priority of

the COB in the network.

DBT Distributor. Service element of CAL, responsible for the dynamic allocation of identifiers.

DS Draft Standard

DSP Draft Standard Proposal; ID Identifier, see COB-ID

LMT Layer Management. Service element of CAL, responsible for the configuration of the

parameters in the individual layers of the communication model.

LSB Least significant bit/byte
MSB Most significant bit/byte

NMT Network Management. Service element of CAL, responsible for the initialization,

configuration and error handling in the network.

OSI Open Systems Interconnection. Layer model for describing the function areas in a data

communication system.

PDO Process Data Object. Object for the exchange of process data.

RTR Remote Transmission Request; Data request telegram.

SDO Service Data Object. Communication Object, by means of which the Master can access

the Object Dictionary of a node.

SYNC Synchronization telegram. Stations on the Bus reply to the SYNC command by

transmitting their process value.

R.000.000 21-37 of 41

Absolute Multiturn Encoders CANLift

22 Decimal-Hexadecimal Conversion Table

With numerical data, the decimal values are given as numerals with no affix (e.g. 1408), binary values are identified by the letter b (e.g. 1101b) and hexadecimal values with an h (e.g., 680h) after the numerals.

Dez	Hex	Dez	Hex	Dez	Hex	Dez	Hex
0	00	32	20	64	40	96	60
1	01	33	21	65	41	97	61
2	02	34	22	66	42	98	62
3	03	35	23	67	43	99	63
4	04	36	24	68	44	100	64
5	05	37	25	69	45	101	65
6	06	38	26	70	46	102	66
7	07	39	27	71	47	103	67
8	08	40	28	72	48	104	68
9	09	41	29	73	49	105	69
10	0A	42	2A	74	4A	106	6A
11	0B	43	2B	75	4B	107	6B
12	0C	44	2C	76	4C	108	6C
13	0D	45	2D	77	4D	109	6D
14	0E	46	2E	78	4E	110	6E
15	0F	47	2F	79	4F	111	6F
16	10	48	30	80	50	112	70
17	11	49	31	81	51	113	71
18	12	50	32	82	52	114	72
19	13	51	33	83	53	115	73
20	14	52	34	84	54	116	74
21	15	53	35	85	55	117	75
22	16	54	36	86	56	118	76
23	17	55	37	87	57	119	77
24	18	56	38	88	58	120	78
25	19	57	39	89	59	121	79
26	1A	58	3A	90	5A	122	7A
27	1B	59	3B	91	5B	123	7B
28	1C	60	3C	92	5C	124	7C
29	1D	61	3D	93	5D	125	7D
30	1E	62	3E	94	5E	126	7E
31	1F	63	3F	95	5F	127	7F

R.000.000 22-38 of 41

Absolute Multiturn Encoders CANLift

23 Glossary

Baudrate

The baud rate is the data transfer rate. It is linked to the nominal bit timing. The maximum possible baud rate is dependent on numerous factors that affect the transfer time on the bus. There is a significant connection between the maximum baud rate and the bus length and type of cable. In CANopen the various baud rates are defined between 10 Kbit/s and 1 Mbit/s.

CANopen

CANopen is a protocol based on CAN that was originally developed for industrial control systems. The specifications contain various device profiles as well as the framework for specific applications. CANopen networks are used in off-road vehicles, electronics on-board ships, medical equipment and the railways. The very flexible application layer together with the many optional features are ideal for tailor-made solutions. Furthermore, a wide variety of configuration tools are available. On this basis the user is able to define device profiles that are specific to his application. More information on CANopen can be found in the Internet at www.can-cia.org.

Data Rate

The Data Rate is the amount of data that can be transferred within a specific time.

EDS file

The EDS (Electronic Data Sheet) is provided by the vendor/manufacturer of the CANopen device. It has a standardized format for describing the device. The EDS contains information concerning:

- Description of the file (name, version, date programme was generated etc.)
- General information about the device (manufacturer's name and code)
- Device name and type, Version, LMT address
- · Supported baud rates, as well as boot-up capability
- Description of the attributes of supported Objects.

Node number

Every device within a CANopen network can be identified by its node number (Node-ID). The permitted range for node numbers is from 1 to 127 and each may only occur once within a network.

Network Management

In a distributed system, various tasks arise that have to do with the configuration, initialization and control of stations on the network. This functionality is provided in CANopen by the defined service element »Network Management (NMT)«.

PDO

The Process Data Objects (PDOs) provide the actual transport means for transferring the process data (Application Objects). A PDO is transmitted by a Producer and can be received by one or more Consumers.

PDO Mapping

The size of a PDO can be up to 8 byte. It can be used to transport several Application Objects. PDO Mapping describes the definition of the structure of the Application Objects within the data field of the PDO.

SDO

The confirmed transfer of data, of any length, between two stations on the network occurs via Service Data Objects (SDOs). Data transfer takes place in the Client-Server mode.

R.000.000 23-39 of 41

Absolute Multiturn Encoders CANLift

24 Index

A

Acceleration Value · 16-26

Alarms · 16-30

Application Programming · 10-15

asynchronously · 2-6

В

Baud rate · 4-8, 16-30

Baudrate · 23-39

Bus termination · 16-31

 \boldsymbol{C}

CANbus connection · 5-9

CANopen · 23-39

CANopen Object Dictionary · 14-21

COB-ID • 17-34

D

Data Rate · 23-39

Default settings · 6-10

Device Profile DS 406 V3.2 · 16-23

DIAG LED · 6-11

DS 301 V4.02 · 1-5

DS 406 V3.1 · 1-5

DS 417 V1.1 · 1-5

 \boldsymbol{E}

EDS file · 23-39

EEPROM · 6-11

Emergency messages · 6-11

Emergency Objects · 13-19

Encoder Device Profile DS 406 V3.1 · 2-6

Encoder Measuring Step · 16-32

Error Codes · 13-19

Error Display after switching on . 19-36

EventTimer · 10-15

 \overline{F}

Firmware Flashversion · 16-31

I

Identity Object · 11-17

Initial Startup · 4-8

 \overline{L}

LED Monitoring · 19-35

Lift number · 16-24

Load Standard Values · 10-16

M

Manufacturer-specific Objects · 15-22 Mapping table · See PDO Mapping

Measuring Units per Revolution · 16-25

N

Network Management · 17-33, 23-39

NMT Commands · 17-34

NMT Reset Node • 4-9, 16-31

Node address · 16-31

Node Guarding · 18-34

Node number ⋅ **4-9**, 23-39

node number 0 · 16-31

Node number 0 · 4-9

0

Object 1029h Error Behaviour · 16-32

Object Dictionary · 1-5

Objects not mentioned · 16-32

Operating Parameters · 16-24

Operating Status · 16-28

Operational · 17-33

P

PDO · 2-6, 23-39, See Glossary

PDO Mapping · 23-39

Position Value · 16-26

Pre-operational · 17-33

Prepared · 17-33

Preset Value · 16-25

R.000.000 24-40 of 41

Absolute Multiturn Encoders CANLift

R

RTR-Telegram · 2-6

S

SDO · 2-6, 23-39
Set-key · 6-11
Singleturn resolution · 16-28
speed output · 12-18
Speed Value · 16-26
Store Parameters 1010h · 10-16
Supported virtual device types · 16-24
synchronously · 2-6

 \overline{T}

Termination ⋅ 4-8 transmission type ⋅ Siehe PDO

 \boldsymbol{V}

Variable PDO Mapping · 8-13

W

Warnings · 16-29 Working Area State Register · 16-27

25 Technical Data Electrical, Mechanical

R.000.000 25-41 of 41

Sendix Absolute, Multiturn Type 5868, CANopen/CANlift

Safety-LockTM High rotational speed

Temperature

High IP

High shaft load capacity

Shock/vibration resistant

field proof

proof

protection

Reliable

- Increased resistance against vibrations and installation mistakes. Avoids machine stops and repair work
- Sturdy "Safety-LockTM Design" bearing structure
- Few components and connection points increase the operational reliability Kübler OptoASIC technology with highest integration density (Chip-on-Board)
- · Remains tight, even in roughest environments, ensures highest safety against field breakdowns Resistant die cast housing and protection up to IP 67
- Can be used in a wide temperature range without additional charge wide temperature range (-40°C...+90°C)

Fast

working area

- Really synchronous position acquisition of several axes
 - Extended CAN Sync Mode with realtime position acquisition
- Fast data availability while reducing the load on the bus and the control Intelligent functions like the transmission of speed, acceleration or exiting a
- Fast, simple and error-free connection

Versatile

- Latest field bus performance for the applications
- CANopen, CANlift with the latest pro-
- The suitable connection variant for every specific case
- Bus terminal cover with M12 connector or cable connection or fixed connection with M12, M23 or D-Sub connector, also easy point-to-point connections
- · Position, Speed, acceleration, working area - The user decides which information is to be available in real-time Variable PDO mapping in the memory
- Quick and error-free start-up, without setting any switches
 - Node address, baud rate and termination can be programmed via the bus
- · Reliable mounting in the most various installation cases
 - Comprehensive and proven mounting possibilities

Mechanical characteristics:

Max. speed without shaft sealing (IP 65) up to 70 °C:	9 000 min ⁻¹ , continuous 7 000 min ⁻¹
Max. speed without shaft sealing (IP 65) up to Tmax:	7 000 min ⁻¹ , continous 4 000 min ⁻¹
Max. speed with shaft sealing (IP 67) up to 70 °C:	8 000 min ⁻¹ , continous 6 000 min ⁻¹
Max. speed with shaft sealing (IP 67) up to Tmax:	6 000 min ⁻¹ , continous 3 000 min ⁻¹
Starting torque without shaft sealing (IP65):	< 0.01 Nm
Starting torque with shaft sealing (IP67):	< 0.03 Nm
Moment of inertia:	4.0 x10 ⁻⁶ kgm ²
Radial load capacity of shaft:	80 N
Axial load capacity of shaft:	40 N
Weight:	appr. 0.57 kg with bus terminal cover
	appr. 0.52 kg with fixed connection
Protection acc. to EN 60 529:	housing: IP 67, shaft: IP 65, opt. IP 67
Working temperature:	−40° C +80 °C ¹⁾
Materials:	Shaft: stainless steel, Flange: aluminium,
	Housing: die cast zinc, Cable: PVC
Shock resistance acc. to DIN-IEC 68-2-27:	>1000 m/s ² , 6 ms
Vibration resistance acc. to DIN-IEC 68-2-6:	>100 m/s ² , 55 2000 Hz

- Absolutely safe operation even in strong magnetic fields
- Over 40 years of experience in the field of precision mechanics

47

· Special gears with specific toothing

New for 2006 www.kuebler.com

¹⁾cable versions: -30 °C ... + 75°C

Sendix Absolute, Multiturn Type 5868, CANopen/CANlift

General electrical characteristics:

Supply voltage:	10 30 V DC
Current consumption	24 V DC, max. 65 mA
(w/o output load):	
Reverse polarity protection	Yes
at power supply (Ub):	
Conforms to CE requirement	s acc. to EN 61000-6-1, EN 61000-6-4
and EN 61000-6-3	

Interface characteristics CANopen/CANlift:

Singleturn resolution	1 65536 (16 bits), default scale value is
(max, scaleable):	set to 8192 (13 bits)
Number of Revolutions:	4096 (12 bits), (scaleable 1 4096)
Code:	Binary
Interface:	CAN High-Speed according ISO 11898,
	Basic- and Full-CAN
	CAN Specification 2.0 B
Protocol:	CANopen profile DS 406 V3.1 with
	manufacturer-specific add-on's

General information about CAN/CANlift

The CANopen encoders of the 5868 series support the latest CANopen communication profile according to DS 301 V4.02. In addition, device-specific profiles like the encoder profile DS 406 V3.1 and the profile DS 417 V1.1 (for lift applications) are available. The following operating modes may be selected: Polled Mode, Cyclic Mode, Sync Mode and a High Resolution Sync Protocol. Moreover, scale factors, preset values, limit switch values and many other additional parameters can be programmed via the CAN-Bus. When switching the device on, all parameters, which have been saved on an EEPROM to protect them against power failure, are loaded again.

The following output values may be combined in a freely variable way as PDO (PDO mapping): **position, speed, acceleration**, as well

CANopen Communication Profile V4.02

Among others, the following functionality is integrated: Class C2 Functionality

NMT Slave • Heartbeat Protocol • High Resolution Sync Protocol Identity Object • Error Behaviour Object • Variable PDO Mapping self-start programmable (Power on to operational)

3 Sending PDO's • 1 Receiving PDO for synchronous preset operation with minimal jitter • Knot address, baud rate and CANbus Programmable termination

CANopen Encoder Profile V3.1

The following parameters can be programmed:

- · Event mode
- Units for speed selectable (Steps/Sec or RPM)
- Factor for speed calculation (e.g. measuring wheel periphery)
- Integration time for speed value of 1...32
- 2 work areas with 2 upper and lower limits and the corresponding output states
- Variable PDO mapping for position, speed, acceleration, work area status
- Extended failure management for position sensing with integrated temperature control
- User interface with visual display of bus and failure status 3 LFD's
- optional 32 CAM's programmable
- Customer-specific memory 16 Bytes

SET control button (zero or defined value, option)

Protected against accidental activation, can only be pushed in with the tip of a ball pen or similar.

Diagnostic LED (yellow)

LED on at

optical sensor path faulty (code error, LED error), low voltage and overtemperature

	or
	CANlift profile DS 417 V1.1
Baud rate:	10 1000 kbits/s
	(set by DIP switches/software configurable)
Node address:	1 127 (set by rotary switches / software
	configurable)
Termination switchable:	Set by DIP switches
	Software configurable

as the status of the working area.

As a price-effective variant, encoders with a connector or a cable connection are available, for which the device address and baud rate are modified by means of software. The models with bus terminal cover and integrated T-shaped coupler allow a particularly easy installation: bus and power supply are connected very simply thanks to M12 connectors; the device address is set by means of two hexadecimal rotary switches. Furthermore, another DIP switch allows setting the baud rate and switching on a termination resistor. Three LED's located on the back indicate the operating or fault status of the CAN bus, as well as the status of an internal diagnostic.

CANopen Lift Profile DS 417 V1.1

Among others, the following functionality is integrated:

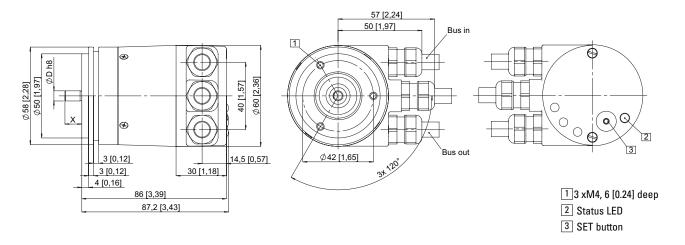
- Car Position Unit
- 2 virtual devices
- 1 virtual device delivers the posititon in absolute measuring steps (steps)
- 1 virtual device delivers the posititon as an absolute travel information in mm
- Lift number programmable
- Independent setting of the knot address in relation with the CAN identifier
- Factor for speed calculation (e.g. measuring wheel periphery)
- Integration time for speed value of 1...32
- 2 work areas with 2 upper and lower limits and the corresponding output states
- Variable PDO mapping for position, speed, acceleration, work area status
- Extended failure management for position sensing with integrated temperature control
- User interface with visual display of bus and failure status
 3 LED's

All profiles stated here: Key-features

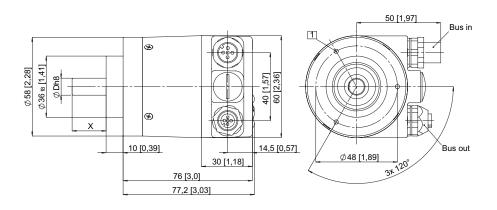
The object 6003h "Preset" is assigned to an integrated key, accessible from the outside

"Watchdog-controlled" device

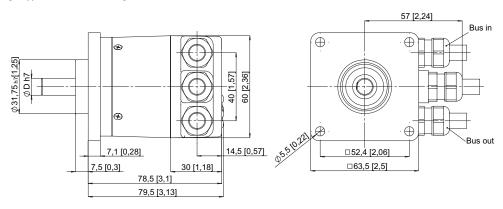
48 www.kuebler.com New for 2006



49


Sendix Absolute, Multiturn Type 5868, CANopen/CANlift

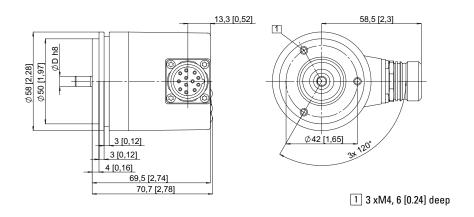
With removable bus terminal cover

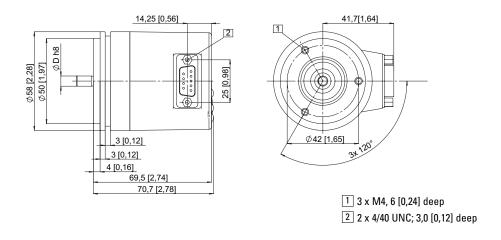

ø 58 mm, Synchro flange Flange type 2 and 4 (Drawing with cable version)

ø 58 mm, Clamping flange Flange type 1 and 3 (Drawing with 2 x M12 connector)

63.5 mm □, Square flange Flange type 5 and 7 (Drawing with cable version)

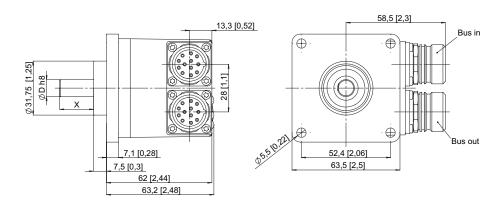
New for 2006 www.kuebler.com


1 3xM3, 6 [0.24] deep


Sendix Absolute, Multiturn Type 5868, CANopen/CANlift

With fixed connection

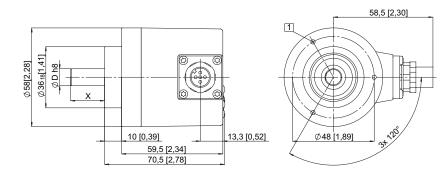
ø 58 mm, Synchro flange Flange type 2 and 4 (Drawing with M23 connector)



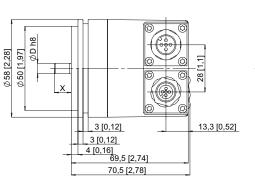
ø 58 mm, Synchro flange Flange type 2 and 4 (Drawing with D-SUB connector)

63.5 mm \square , Square flange Flange type 5 and 7 (Drawing with 2 x M23 connector)

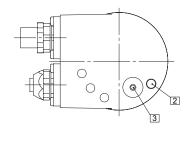
50


www.kuebler.com

Sendix Absolute, Multiturn Type 5868, CANopen/CANlift

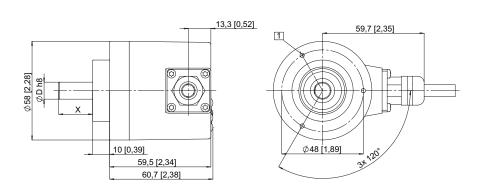

With fixed connection

ø 58 mm, Clamping flange Flange type 1 and 3 (Drawing with 1 x M12 connector)



1 3xM3, 6 [0.24] deep

ø 58 mm, Synchro flange Flange type 2 and 4 (Drawing with 2 x M12 connector)



- 1 3xM4, 6 [0.24] deep
- 2 Status LED
- 3 SET button

 \varnothing 58 mm, Clamping flange Flange type 1 and 3 (Drawing with cable version)

1 3xM3, 6 [0.24] deep

Sendix Absolute, Multiturn Type 5868, CANopen/CANlift

Terminal assignment:

Bus terminal cover with terminal box (type of connection 1)

Direction: OUT				IN						
Signal:	CAN Ground	CAN_Low (-)	CAN_High (+)	0 Volt power supply	+UB power supply	0 V power supply	+UB power supply	CAN_Low (-)	CAN_High (+)	CAN Ground
Abbreviation:	CG	CL	СН	0 V	+V	0 V	+V	CL	СН	CG

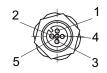
Terminal assignment:

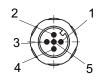
Cable connection (type of connection A) and D-SUB-9 connector (type of connection K)

Direction:	IN					
Signal:	0 V power supply	+UB power supply	CAN_Low (-)	CAN_High (+)	CAN Ground	
Abbreviation:	0 V	+V	CL	СН	CG	
Cable color:	BK	RD	BL	WH	GY	
D-SUB 9	6	9	2	7	3	

Terminal assignment:

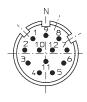
Bus terminal cover with 2 x M12 connector (type of connection 2, F or J)


Direction:	OUT					IN				
Signal:	CAN Ground	CAN_Low (-)	CAN_High (+)	0 Volt power supply	+UB power supply	0 V power supply	+UB power supply	CAN_Low (-)	CAN_High (+)	CAN Ground
Abbreviation:	CG	CL	СН	0 V	+V	0 V	+V	CL	СН	CG
M23 PIN assignment	3	2	7	10	12	10	12	2	7	3
M12 PIN assignment	1	5	4	3	2	3	2	5	4	1


Bus in and out M23:

Bus out:

Bus in:

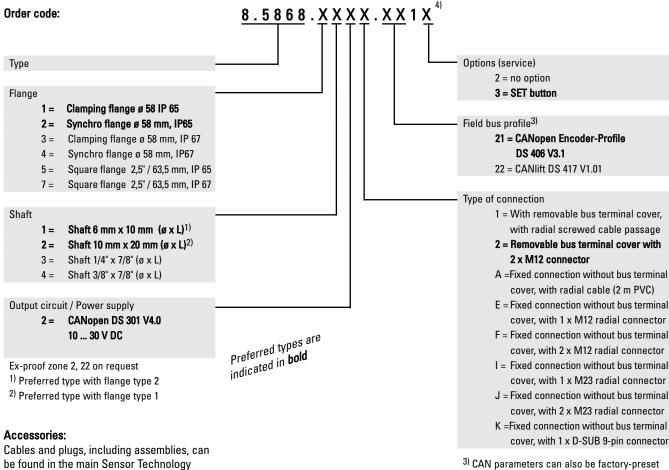


Terminal assignment:

M23 (type of connection I) or M12 (type of connection E) connector

Wize (type of confidential if of Witz (type of confidential E/ confidential							
Richtung:		IN					
Signal:	0 V power supply	+UB power supply	CAN_Low (-)	CAN_High (+)	CAN Ground		
Abbreviation:	0 V	+V	CL	СН	CG		
M23 PIN assignment	10	12	2	7	3		
M12 PIN assignment	3	2	5	4	1		

Bus in M23:


Bus in M12:

Sendix Absolute, Multiturn Type 5868, CANopen/CANlift

catalogue (Accessories section)

³⁾ CAN parameters can also be factory-preset

53

New for 2006 www.kuebler.com

⁴⁾ Series delivery as from August 2006

Sendix Absolute, Multiturn Type 5888, CANopen/CANlift

Safety-LockTM High rotational

speed

Temperature

High shaft load capacity

Shock/vibration resistant

field proof

Short-circuit proof

Reliable

· Increased resistance against vibrations and installation mistakes. Avoids machine stops and repair work

Sturdy "Safety-LockTM Design" bearing structure

 Few components and connection points increase the operational reliability Kübler OptoASIC technology with highest integration density (Chip-on-Board)

· Remains tight, even in roughest environments, ensures highest safety against field breakdowns Resistant die cast housing and protection up to IP 67

- · Can be used in a wide temperature range without additional charge wide temperature range (-40°C...+90°C)
- Failure-free operation immediately visible on the bus

Fast

 Really synchronous position acquisition of several axes

Extended CAN Sync Mode with realtime position acquisition

- · Fast data availability while reducing the load on the bus and the control Intelligent functions like the transmission of speed, acceleration or exiting a working area
- Fast, simple and error-free connection

Versatile

- Latest field bus performance for the applications
- CANopen, CANlift with the latest pro-
- The suitable connection variant for every specific case

Bus terminal cover with M12 connector or cable connection or fixed connection with M12, M23 or D-Sub connector, also easy point-to-point connections

- Direct mounting also on large diameter standard shafts
- Blind hollow shaft up to 15 mm
- . The Bus is only used when this is really necessary - the user decides Event, Cyclic or Remote Mode
- No wait times during machine start Starting directly possible in operational mode
- Referencing without time loss Dynamic setting of a preset position during operation.

Mechanical characteristics:

Max. speed without shaft sealing (IP 65) up to 70 °C:	9 000 min ⁻¹ , continuous 7 000 min ⁻¹
Max. speed without shaft sealing (IP 65) up to Tmax:	7 000 min ⁻¹ , continous 4 000 min ⁻¹
Max. speed with shaft sealing (IP 67) up to 70 °C:	8 000 min ⁻¹ , continous 6 000 min ⁻¹
Max. speed with shaft sealing (IP 67) up to Tmax:	6 000 min ⁻¹ , continous 3 000 min ⁻¹
Starting torque without shaft sealing (IP65):	< 0.01 Nm
Starting torque with shaft sealing (IP67):	< 0.03 Nm
Moment of inertia:	$7.5 \times 10^{-6} \text{ kgm}^2$
Weight:	appr. 0.57 kg with bus terminal cover
	appr. 0.52 kg with fixed connection
Protection acc. to EN 60 529:	housing: IP 67, shaft: IP 65, opt. IP 67
Working temperature:	−40° C +80 °C ¹⁾
Materials:	Hollow shaft: stainless steel, Flange: aluminium,
	Housing: die cast zinc , Cable: PVC
Shock resistance acc. to DIN-IEC 68-2-27:	>1000 m/s ² , 6 ms
Vibration resistance acc. to DIN-IEC 68-2-6:	>100 m/s ² , 55 2000 Hz

- · Absolutely safe operation even in strong magnetic fields
- Over 40 years of experience in the field of precision mechanics
- Special gears with specific toothing

www.kuebler.com New for 2006 54

¹⁾cable versions: -30 °C ... + 75 °C

Sendix Absolute, Multiturn Type 5888, CANopen/CANlift

General electrical characteristics:

Supply voltage:	10 30 V DC
Current consumption	24 V DC, max. 65 mA
(w/o output load):	
Reverse polarity protection	Yes
at power supply (Ub):	
Conforms to CE requirement	s acc. to EN 61000-6-1, EN 61000-6-4
and EN 61000-6-3	

Interface characteristics CANopen/CANlift:

Singleturn resolution	1 65536 (16 bits), default scale value is
(max, scaleable):	set to 8192 (13 bits)
Number of Revolutions:	4096 (12 bits), (scaleable 1 4096)
Code:	Binary
Interface:	CAN High-Speed according ISO 11898,
	Basic- and Full-CAN
	CAN Specification 2.0 B
Protocol:	CANopen profile DS 406 V3.1 with
	manufacturer-specific add-on's

General information about CAN/CANlift

The CANopen encoders of the 5888 series support the latest CANopen communication profile according to DS 301 V4.02. In addition, device-specific profiles like the encoder profile DS 406 V3.1 and the profile DS 417 V1.1 (for lift applications) are available. The following operating modes may be selected: Polled Mode, Cyclic Mode, Sync Mode and a High Resolution Sync Protocol. Moreover, scale factors, preset values, limit switch values and many other additional parameters can be programmed via the CAN-Bus. When switching the device on, all parameters, which have been saved on an EEPROM to protect them against power failure, are loaded again.

The following output values may be combined in a freely variable way as PDO (PDO mapping): position, speed, acceleration, as well

CANopen Communication Profile V4.02

Among others, the following functionality is integrated: Class C2 Functionality

NMT Slave • Heartbeat Protocol • High Resolution Sync Protocol Identity Object • Error Behaviour Object • Variables PDO Mapping self-start programmable (Power on to operational)

3 Sending PDO's • 1 Receiving PDO for synchronous preset opera-

3 Sending PDO's • 1 Receiving PDO for synchronous preset operation with minimal jitter • Knot address, baud rate and CANbus Programmable termination

CANopen Encoder Profile V3.1

The following parameters can be programmed:

- Event mode
- Units for speed selectable (Steps/Sec or RPM)
- Factor for speed calculation (e.g. measuring wheel periphery)
- Integration time for speed value of 1...32
- 2 work areas with 2 upper and lower limits and the corresponding output states
- Variable PDO mapping for position, speed, acceleration, work area status
- Extended failure management for position sensing with integrated temperature control
- User interface with visual display of bus and failure status 3 LED's
- optional 32 CAM's programmable
- Customer-specific memory 16 Bytes

SET control button (zero or defined value, option)

Protected against accidental activation, can only be pushed in with the tip of a ball pen or similar.

Diagnostic LED (yellow)

LED on at

optical sensor path faulty (code error, LED error), low voltage and overtemperature

or
CANlift profile DS 417 V1.1
10 1000 kbits/s
(set by DIP switches/software configurable)
1 127 (set by rotary switches / software
configurable)
Set by DIP switches
Software configurable

as the status of the working area.

As a price-effective variant, encoders with a connector or a cable connection are available, for which the device address and baud rate are modified by means of software. The models with bus terminal cover and integrated T-shaped coupler allow a particularly easy installation: bus and power supply are connected very simply thanks to M12 connectors; the device address is set by means of two hexadecimal rotary switches. Furthermore, another DIP switch allows setting the baud rate and switching on a termination resistor. Three LED's located on the back indicate the operating or fault status of the CAN bus, as well as the status of an internal diagnostic.

CANopen Lift Profile DS 417 V1.1

Among others, the following functionality is integrated:

- Car Position Unit
- 2 virtual devices
- 1 virtual device delivers the posititon in absolute measuring steps (steps)
- 1 virtual device delivers the posititon as an absolute travel information in mm
- · Lift number programmable
- Independent setting of the knot address in relation with the CAN identifier
- Factor for speed calculation (e.g. measuring wheel periphery)
- Integration time for speed value of 1...32
- 2 work areas with 2 upper and lower limits and the corresponding output states
- Variable PDO mapping for position, speed, acceleration, work area status
- Extended failure management for position sensing with integrated temperature control

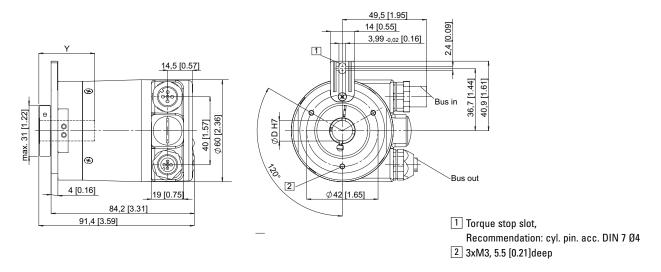
55

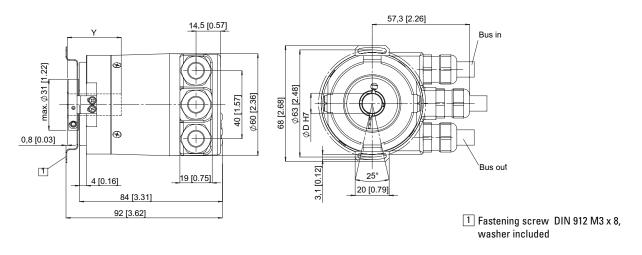
User interface with visual display of bus and failure status
 3 LED's

All profiles stated here: **Key-features**

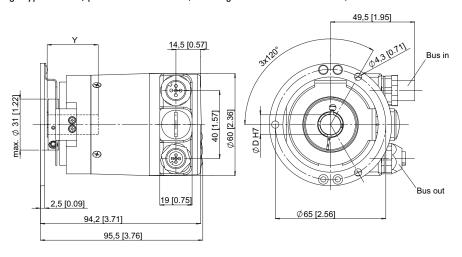
The object 6003h "Preset" is assigned to an integrated key, accessible from the outside

"Watchdog-controlled" device


New for 2006 www.kuebler.com

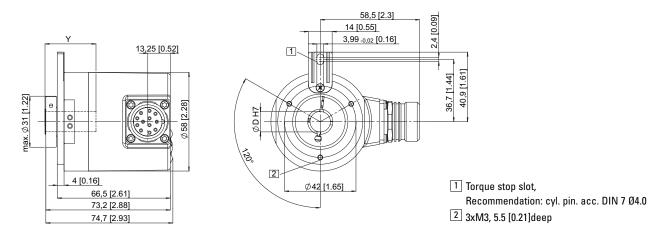

Sendix Absolute, Multiturn Type 5888, CANopen/CANlift

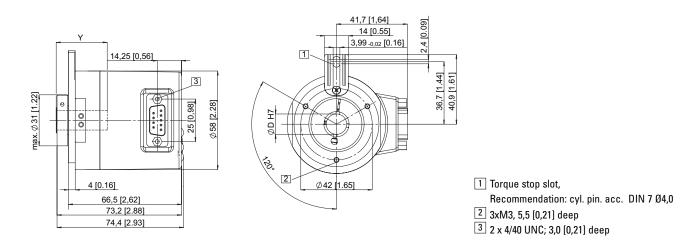
With removable bus terminal cover


ø 58 mm, Flange with long torque stop Flange type 1 and 2 (Drawing with 2x M12 connector)

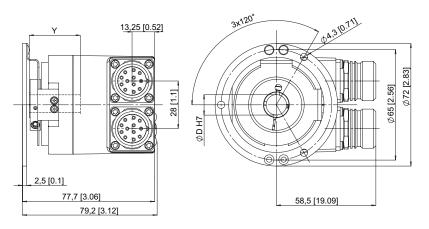
ø 58 mm, Flange with stator coupling Flange type 5 and 6, pitch circle ø 63 mm (Drawing with cable versions)

ø 58 mm, Flange with stator coupling Flange type 3 and 4, pitch circle ø 65 mm (Drawing with 2x M12 connector)


Y: Depth for blind hollow shaft: 30 mm

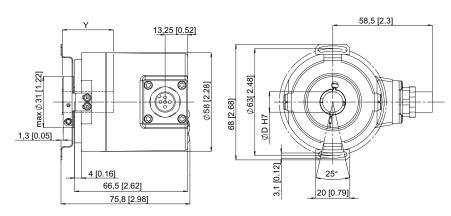

Sendix Absolute, Multiturn Type 5888, CANopen/CANlift

With fixed connection

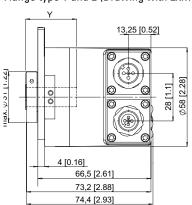

ø 58 mm, Flange with long torque stop Flange type 1 and 2 (Drawing with M23 connector)

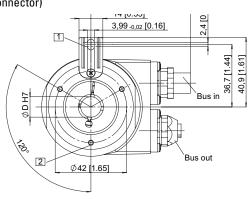
ø 58 mm, Flange with long torque stop Flange type 1 and 2 (Drawing with D-SUB connector)

ø 58 mm, Flange with stator coupling Flange type 3 and 4, pitch circle ø 65 mm (Drawing with 2xM23 connector)

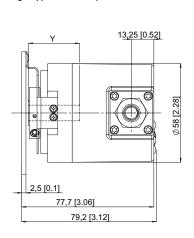

New for 2006 www.kuebler.com 57

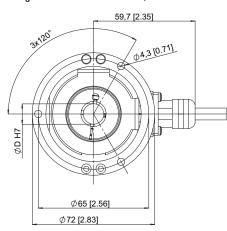
Sendix Absolute, Multiturn Type 5888, CANopen/CANlift


With fixed connection


ø 58 mm, Flange with stator coupling Flange type 5 and 6, pitch circle ø 63 mm (Drawing with M12 connector)

Y: Depth for blind hollow shaft: 30 mm


ø 58 mm, Flange with long torque stop Flange type 1 and 2 (Drawing with 2xM12 connector)



- 1 Torque stop slot, Recommendation: cyl. pin. acc. DIN 7 Ø4.0
- 2 3xM3, 5.5 [0.21]deep

ø 58 mm, Flange with stator coupling Flange type 3 and 4, pitch circle ø 65 mm (Drawing with 2x M12 connector)

Y: Depth for blind hollow shaft: 30 mm

58 www.kuebler.com New for 2006

Sendix Absolute, Multiturn Type 5888, CANopen/CANlift

Terminal assignment:

Bus terminal cover with terminal box (type of connection 1)

Direction:	OUT				IN					
Signal:	CAN Ground	CAN_Low (-)	CAN_High (+)	0 Volt power supply	+UB power supply	0 V power supply	+UB power supply	CAN_Low (-)	CAN_High (+)	CAN Ground
Abbreviation:	CG	CL	СН	0 V	+V	0 V	+V	CL	СН	CG

Terminal assignment:

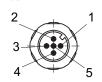
Cable connection (type of connection A) and D-SUB-9 connector (type of connection K)

Direction:	IN									
Signal:	0 V power supply	+UB power supply	CAN_Low (-)	CAN_High (+)	CAN Ground					
Abbreviation:	0 V	+V	CL	СН	CG					
Cable color:	BK	RD	BL	WH	GY					
D-SUB 9	6	9	2	7	3					

Terminal assignment:

Bus terminal cover with 2 x M12 connector (type of connection 2, F or J)


Direction:	OUT					IN				
Signal:	CAN Ground	CAN_Low (-)	CAN_High (+)	0 Volt power supply	+UB power supply	0 V power supply	+UB power supply	CAN_Low (-)	CAN_High (+)	CAN Ground
Abbreviation:	CG	CL	СН	0 V	+V	0 V	+V	CL	СН	CG
M23 PIN assignment	3	2	7	10	12	10	12	2	7	3
M12 PIN assignment	1	5	4	3	2	3	2	5	4	1


Bus in and out M23:

Bus out:

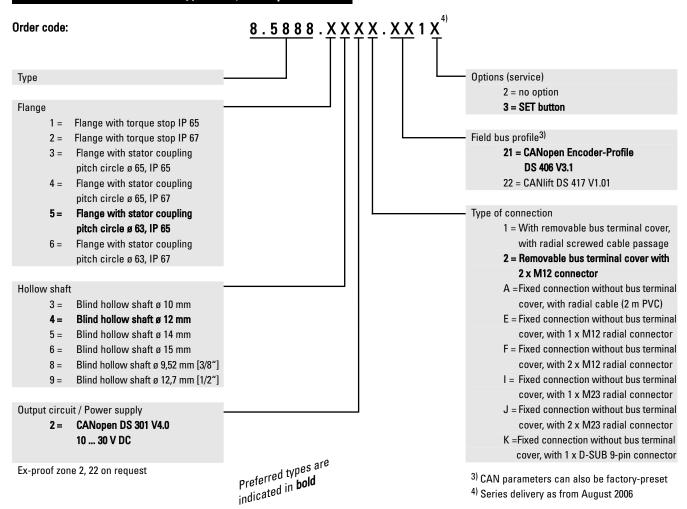
Bus in:

Terminal assignment:

M23 (type of connection I) or M12 (type of connection E) connector

in 20 (type of commodating of interest type of commodating type of										
Richtung:	IN									
Signal:	0 V power supply	+UB power supply	CAN_Low (-)	CAN_High (+)	CAN Ground					
Abbreviation:	0 V	+V	CL	СН	CG					
M23 PIN assignment	10	12	2	7	3					
M12 PIN assignment	3	2	5	4	1					

Bus in M23:


Bus in M12:

59

Sendix Absolute, Multiturn Type 5888, CANopen/CANlift

Accessories:

Cables and plugs, including assemblies, can be found in the main Sensor Technology catalogue (Accessories section)

60 www.kuebler.com New for 2006