# Series 9080 Series 5860





issue 3-2004

# Absolute Multiturn Encoder

DeviceNet® Field Bus
Series 9080

Series 9080 Series 5860

### **Contents**

| Install     | ling instructions for rotary encoders                                | 2        |
|-------------|----------------------------------------------------------------------|----------|
| Introd      | luction and Encoder Features                                         | 3        |
| 1.0         | DeviceNet Bus Interface                                              | 4        |
| 1.1         | DeviceNet Bus Terminal Box                                           | 1        |
| 1.1         | Dip switch S2-6 Bus termination                                      |          |
| 1.3         | Setting of the Baud rate                                             |          |
| 1.4         | Setting the MAC-ID (Node address)                                    |          |
| 1.5         | Connectors and Cabeling (M12 *1 eurofast® Field Wireable Connectors) |          |
| 2 0 Ob      | pject Definition                                                     | 7        |
|             | Class Attributes                                                     |          |
| 2.1<br>2.2. | Instance Attributes                                                  |          |
|             |                                                                      |          |
| 2.3 Att     | tributes and their meaning                                           |          |
| 2.3.1       | Position Sensor Type – Attribute 103                                 |          |
| 2.3.2       | Scaling Function Control – Attribute 105                             |          |
| 2.3.4       | Total Measuring Range – Attribute 108                                |          |
| 2.3.5       | Position measuring increment – Attribute 109                         |          |
| 2.3.6       | Preset Value – Attribute 110                                         |          |
| 2.3.7       | Operating status – Attribute 111                                     |          |
| 2.3.8       | Physical Resolution – Attribute 112                                  |          |
| 2.3.9       | Number of disting. revolutions – Attribute 113                       |          |
| 2.3.10      |                                                                      |          |
| 2.3.11      |                                                                      |          |
| 2.3.12      |                                                                      |          |
| 2.3.13      |                                                                      |          |
| 2.3.14      |                                                                      |          |
| 2.3.15      |                                                                      |          |
| 2.3.17      |                                                                      |          |
| 2.3.19      |                                                                      |          |
| 2.3.18      |                                                                      |          |
| 2.3.20      |                                                                      |          |
| 2.3.21      | EDS-File and Encoder Programming                                     | 12       |
| 3.0 C       | Object Model                                                         | 13       |
| 3.1         | How Objects Affect Behaviour                                         |          |
| 3.2         | Defining Object Interfaces                                           | 14       |
| 3.3         | I/O Assembly Instances                                               |          |
| 3.4         | I/O Assembly Data Attribute Format                                   |          |
| 3.5         | Mapping I/O Assembly Data Attribute Components                       |          |
| 3.6         | Defining Device Configuration                                        |          |
| 3.7         | Parameter Object Instances                                           |          |
| 3.8         | Common Services                                                      | 16       |
| 4.0 R       | SNetWorx                                                             | 17       |
|             | Offline mode                                                         | 17       |
|             | EDS-based devices                                                    |          |
|             | EDS library                                                          |          |
|             | Registration a single file                                           |          |
|             | RSNetWorx Mainscreen                                                 |          |
|             | Parameter adjustments                                                |          |
|             | Parameter adjustments                                                |          |
|             | I/O Data characteristics                                             |          |
| -           |                                                                      |          |
|             | echnical Data                                                        |          |
|             | lechanical characteristics:                                          | 24<br>24 |
| . , FI      | recincal characteristics                                             | /4       |

### Installing instructions for rotary encoders

### It is imperative to read these instructions before setting the encoder in operation.

This encoder is a precision measuring instrument. Always observe the information and instructions of the data sheet to ensure trouble-free function and to maintain warranty claims. Unless otherwise stated in the data sheet, the following has to be absolutely observed:

#### Mechanical:

- It is not permissible to dismantle the encoder entirely or in part or to modify it.
- Do not alter the shaft (by grinding, sawing, drilling, etc.), otherwise the accuracy of the encoder and the dependability of bearing and gasket will suffer. We are prepared to discuss special designs.
- Never align the instrument with a hammer.
- It is imperative to avoid impact loads.
- Radial and axial load capacity as stated in the data sheet have to be observed under any circumstances.
- Do not connect encoder and drive rigidly to one another at shafts <u>and</u> flanges. Always use a coupling (between drive shaft and encoder shaft, or between hollow-shaft encoder flange and drive flange).

We recommend that you use our assembly aids and couplings to install the encoder (see accessory data sheets).

### **Electrical:**

- 1. The existing safety devices for electrical installations have to be observed.
  - Before setting in operation, connect all required strands as per data sheet. To prevent short-circuits, neatly insulate the ends of all strands which are not required.
  - When preassembling the mating connector, comply with any instructions accompanying the connector.
  - Our recommendations regarding cable lengths:
  - in case of asymmetrical transmission, i.e. inverted signals are not used, cable length max. 10 m
  - in case of symmetrical transmission (e.g. to RS 422), cable length max. 50 m (cable with twisted pairs of wires).
  - Plug in or pull out mating connector at the encoder only when encoder is deenergized.
  - Make certain that the operating voltage is correct and the max. permissible output current is not exceeded (see data sheet).
  - The operating voltage for encoder and succeeding device must be turned on and off together. 2. In order to obtain CE-Conformity, EMC installation conformity should be observed. Shielded cables should be used for control lines. In case of symmetrical transmission (e.g. RS 422) a cable with twisted pairs of wire has to be used. The cable shield should if possible be connected fully enclosed (360') by shielded connectors or cable bushings. This has to be done at the encoder and transmission end.
  - The protection earth should be put with low impedance on both face and back of the encoder and the transmission end.
  - In case of earth loop problems, the protection earth of the encoder side has to be removed. On this occasion, the encoder should be placed electrically isolated opposite the actuation.
  - The encoder lines should run separately to cables with high noise levels.
  - Consumer with high disturbance level, e.g. frequency converters, solenoid valves, contactors etc. should not be connected to the same voltage supply. Otherwise, a suitable voltage filtering has to be installed.

### **Safety precautions:**

- 1. If operation without danger can no longer be assured at some point, the unit must be shut down and secured against accidental activation.
- 2. If personal injury or damage to equipment is possible should the encoder fail or malfunction, this must be prevented by suitable safety precautions such as protective devices or limit switches, etc.

We can assume no warranty if the above directives are disregarded. We ask for your understanding.

### Introduction and Encoder Features

Based on the integrated CAN-Bus interface (CAN ISO/DIS 11898) the encoder supports all the following DeviceNet functions

- Polled mode
- Cyclic mode
- Change of state mode (COS)
- Combination of Polled mode and Cyclic mode
- Combination of Polled mode and COS mode
- Offline connection set
- Device heartbeat

Polled mode and Cyclic mode can be used at the same time with programmable time intervals in cyclic mode.

### The Multiturn encoder support the following programmable parameters:

- Code sequence
- · Measuring units per revolution
- Total measuring range
- Number of distinguishable revolutions (multiturn part)
- Preset value

### **Parameter Object**

| Instance | Name                                  | Access |
|----------|---------------------------------------|--------|
| 1        | Code Sequence                         | r/w    |
| 2        | Scaling Function Control              | r/w    |
| 3        | Position Format                       | ro     |
| 4        | Measuring units per Revolution        | r/w    |
| 5        | Total Measuring Range                 | r/w    |
| 6        | Position Measuring Steps              | ro     |
| 7        | Preset Value                          | r/w    |
| 8        | Position Value                        | ro     |
| 9        | Operating Status                      | ro     |
| 10       | Single Turn Resolution                | ro     |
| 11       | Number of distinguishable revolutions | r/w    |
| 12       | Alarm Flag                            | ro     |
| 13       | Generated Alarms                      | ro     |
| 14       | Supported Alarms                      | ro     |
| 15       | Warning Flag                          | ro     |
| 16       | Generated Warnings                    | ro     |
| 17       | Supported Warnings                    | ro     |
| 18       | Serial Number                         | ro     |

ro = read only parameters
r/w = read/write parameters

### Readable Information about Status of the encoder:

### **Position Sensor Object**

| Instance | Name                     |
|----------|--------------------------|
| 111      | Operating status         |
| 112      | Physical Resolution Span |
| 113      | Number of spans          |
| 114      | Alarms                   |
| 117      | Warnings                 |
| 120      | Operating Time           |
| 122      | Min.Position value       |
| 123      | Max.Position Value       |

### 1.0 DeviceNet Bus Interface

### 1.1 DeviceNet Bus Terminal Box

The incoming and the outgoing bus line are directly connected to the bus terminal by the M12 connectors. For all the adjustments made to DeviceNet

- Loosen the 4 (9080) or 3 (5860) hexagon screws and draw off the bus terminal box
- adjust the MAC-ID
- · adjust the baud rate
- select the bus termination

### 1.2 Dip switch S2-6 Bus termination

An internal bus termination resistor of 121 Ohm is selectable by a dip switch S2-6

| Switch S2 | value | state | termination |
|-----------|-------|-------|-------------|
| 6         |       | On    | on          |
| 6         |       | Off   | off*        |



<sup>\*</sup> by default

### 1.3 Setting of the Baud rate

The baud rate can bet set by means of the DIP switches S2 1-3 or by means of software.

### Baud rate 125 kBit/s

| Switch S2 | value          | state | Baudrate |
|-----------|----------------|-------|----------|
| 1         | 2 <sup>0</sup> | Off   | 125 Kb   |
| 2         | 2 <sup>1</sup> | Off   |          |
| 3         | 2 <sup>2</sup> | Off   |          |

#### Baud rate 250 kBit/s

| Switch S2 | value          | state | Baudrate |
|-----------|----------------|-------|----------|
| 1         | 2 <sup>0</sup> | On    | 250 Kb   |
| 2         | 2 <sup>1</sup> | Off   |          |
| 3         | $2^2$          | Off   |          |



#### Baud rate 500 kBit/s

| Switch S2 | value          | state | Baudrate |
|-----------|----------------|-------|----------|
| 1         | 2 <sup>0</sup> | Off   | 500 Kb   |
| 2         | 2 <sup>1</sup> | On    |          |
| 3         | 2 <sup>2</sup> | Off   |          |

### Baud rate and MAC-ID programmable \*

| Switch S2 | value          | state | Programmable |
|-----------|----------------|-------|--------------|
| 1         | 2 <sup>0</sup> | On    | programmable |
| 2         | 2 <sup>1</sup> | On    |              |
| 3         | $2^2$          | Off   |              |

<sup>\*</sup> by default

### 1.4 Setting the MAC-ID (Node address)

During device initialization, the Node Address switches shall be read by the device firmware. The addressable range is from 0..63. Each MAC-Id should be used only once inside a network, so all DeviceNet node are required to participate on a duplicate MAC-ID detection algorithm.

Example: MAC-ID #09

Example: MAC-ID #35

| Switch S1 | value                 | state |
|-----------|-----------------------|-------|
| 1         | <b>2</b> <sup>0</sup> | On    |
| 2         | <b>2</b> <sup>1</sup> | On    |
| 3         | $2^2$                 | Off   |
| 4         | <b>2</b> <sup>3</sup> | Off   |
| 5         | $2^4$                 | Off   |
| 6         | 2 <sup>5</sup>        | On    |



### 1.4.1 "Out-of-box" configuration \*

MAC-ID address and Baud rate programmable by default

Standard DIP-Switch S1 setting is all in "ON"-position, S2[1+2] in "ON"

i.e. the resulting MAC-ID = 63 and Baud rate = 125 Kbit/s

| Switch S1 | value                 | state |
|-----------|-----------------------|-------|
| 1         | <b>2</b> <sup>0</sup> | On    |
| 2         | <b>2</b> <sup>1</sup> | On    |
| 3         | <b>2</b> <sup>2</sup> | On    |
| 4         | <b>2</b> <sup>3</sup> | On    |
| 5         | <b>2</b> <sup>4</sup> | On    |
| 6         | <b>2</b> <sup>5</sup> | On    |



+

| Switch S2 | value          | state | Programmable |
|-----------|----------------|-------|--------------|
| 1         | 2 <sup>0</sup> | On    | programmable |
| 2         | 2 <sup>1</sup> | On    |              |
| 3         | $2^2$          | Off   |              |



# 1.5 Connectors and Cabeling (M12 \*1 eurofast® Field Wireable Connectors)

### eurofast® Field Wireable Connectors







Rating: 3 A, 36 VDC

Rating: 3 A, 36 VDC

| Pin number | color | Pinout            |
|------------|-------|-------------------|
| 1          | GREY  | shield drain wire |
| 2          | RED   | + VDC             |
| 3          | BLACK | - VDC             |
| 4          | WHITE | CAN_H             |
| 5          | BLUE  | CAN L             |

Kübler offers a comprehensive product family of ready-to-use Devicenet cables, which make network installation easy, shorten commissioning times and reduce wiring mistakes.

Note: See our special M12 Devicenet connection technology catalogue

<sup>\*</sup> by default

## 2.0 Object Definition

# POSITION SENSOR Class Code 64 hex

Device: Encoder Device type: 00 hex (Generic Device)

Encoders are used to detect positions of any kind of machines. These devices could be used for following applications: Sensing of angles, distances, tracks, velocity and motion control. This profile covers the measuring principle of absolute and incremental systems as well as the mechanical specification of rotary and linear devices. The detected physical position could be calculated by the device and functionalities like cams, work area switches offers an intelligent position detection.

#### 2.1 Class Attributes

| Attribute<br>ID | Implementat ion | Access | Name     | Data<br>Type | Description             | Semantics                                           |
|-----------------|-----------------|--------|----------|--------------|-------------------------|-----------------------------------------------------|
| 1               | Required        | Get    | Revision | UINT         | Revision of this object | The current value assigned to this attribute (0x02) |

### 2.2. Instance Attributes

The required attributes ensure common base functionality for all encoders (revision 2.0)

| Attribute<br>ID | Access<br>Rule | Name                                           | DeviceNet<br>Data Type | Description of Attribute                                                                                     | Semantics of Values                                                         |
|-----------------|----------------|------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 100             | Get            | number of attributes                           | UINT                   | Number of Attributes supported                                                                               | Default = 23                                                                |
| 101             | Get            | Attributes List                                | Array of<br>USINT      | List of Attributes supported                                                                                 |                                                                             |
| 102             | Get            | position Value                                 | DINT5                  | Current position for Revision > 1.                                                                           | The content is based upon 105,107,108,110,113                               |
| 103             | Get            | position sensor type                           | UINT                   | specifies the encoder type                                                                                   | Default = 11<br>Multiturn                                                   |
| 104             | Get/Set        | direction counting toggle                      | BOOL                   | Direction control for counting. Changing this value shall change the position relative to physical movement. | Default = 0                                                                 |
| 105 ①           | Get/Set        | scaling function control                       | BOOL                   | Physical resolution [62] is converted in software to a numerical value                                       | O = OFF (Default)<br>1 = ON                                                 |
| 106             | Get            | position format                                | ENGUINTS               | Format of the position value of other attributes.                                                            | Supported units: counts<br>(default )<br>0x0800-0x0FFF = vendor<br>specific |
| 107 ①           | Get/Set        | measuring units per span                       | UDINT                  | Number of distinguishable steps per one complete span. Less than or equal to physical resolution [62].       | For rotary devices a span equal one revolution.                             |
| 108 ①           | Get/Set        | total measuring<br>range in measuring<br>units | UDINT                  | Steps over the total measuring range. Only used for rotary encoders.                                         |                                                                             |
| 109             | Get            | Position measuring increment                   | UDINT                  | Specifies the smallest incremental change of the Position Value attribute.                                   | Units depend on Position Format attribute. Default = 1.                     |
| 110 ①           | Get/Set        | preset value                                   | UDINT                  | Output position value is set to Preset Value. What does this mean?                                           |                                                                             |

| 111   | Get      | operating status                          | ВУТЕ  | Encoder diagnostic<br>Contain operating<br>status                                                                   | Bit 0 0 = Positive 1 = Negative Bit 1 0 = Diagnostic not supp. 1 = Diagnostic supp. Bit 2 0 = Scaling OFF 1 = Scaling ON                                 |
|-------|----------|-------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 112   | Get      | physical resolution<br>span               | UDINT | Number of<br>distinguishable steps<br>per one complete span.<br>Less than or equal to<br>physical resolution        | For rotary devices a span equals one revolution.                                                                                                         |
| 113 ① | Get /Set | number of spans                           | UINT  | This is equal to the<br>number of turns when<br>a rotary type device is<br>used                                     | Default = 4096                                                                                                                                           |
| 114   | Get      | alarms                                    | WORD  | Malfunction could lead into an incorrect position value                                                             | Bit 0  0 = NO Position error  1 = Yes Position error  Bit 1  0 = Diagnostic OK  1 = Diagnostic Error  Bit 211 reserved  Bit 12-15  manufacturer specific |
| 115   | Get      | supported alarms                          | WORD  | Information about supported alarms                                                                                  | Bit 0 0 = No Position error 1 = YES Position err Bit 1 0 = No Diagnostic 1 = YES Diagnostic Bit 211 reserved Bit 12-15 manufaturer specific              |
| 116   | Get      | alarm flag                                | BOOL  | Indicates if an alarm<br>error occurs,<br>depends on alarms<br>Attr. 114                                            | 0 = OK<br>1 = Alarm error                                                                                                                                |
| 117   | Get      | warnings                                  | UINT  | Internal parameters exceeded                                                                                        | See attribute semantics section.                                                                                                                         |
| 118   | Get      | Supported warnings                        | WORD  | Information about supported warnings                                                                                | See attribute semantics section.                                                                                                                         |
| 119   | Get      | warning flag                              | BOOL  | indicates if an warning<br>error occurs<br>(logical OR connection<br>of all bits, depends on<br>warnings Attr. 117) | 0 = OK<br>1 = Warning flag                                                                                                                               |
| 120   | Get      | operating time                            | UDINT | stores operating time<br>for the encoder in<br>tenths of an hour                                                    |                                                                                                                                                          |
| 121   | Get      | offset value                              | DINT  | The Offset value is calculated by the preset function. Shift position value with the calculated value               |                                                                                                                                                          |
| 122   | Get      | manufacturer<br>minimum position<br>value | DINT  | values given in steps, only changeable by manufacturer.                                                             |                                                                                                                                                          |
| 123   | Get      | manufacturer<br>maximum position<br>value | DINT  | values given in steps, only changeable by manufacturer.                                                             |                                                                                                                                                          |
| 124   | Get      | device serial number                      | DINT  | serial number                                                                                                       | manufacturer sn.                                                                                                                                         |

### ①Attributes, which affects the position value

### 2.3 Attributes and their meaning

### 2.3.1 Position Sensor Type – Attribute 103

| value    | Definition                                                    |
|----------|---------------------------------------------------------------|
| 00       | Single Turn resolver (value if attribute is not supported)    |
| 01       | Single-Turn absolute rotary encoder                           |
| 02       | Multi-Turn absolute rotary encoder                            |
| 03       | Single-Turn absolute rotary encoder with electronic turncount |
| 04       | Incremental rotary encoder                                    |
| 05       | Incremental rotary encoder with electronic counting           |
| 06       | Incremental linear encoder                                    |
| 07       | Incremental linear encoder with electronic counting           |
| 08       | Absolute linear encoder                                       |
| 09       | Absolute linear encoder with cyclic coding                    |
| 10       | Multi-Sensor encoder interface                                |
| 11       | Multi-Turn absolute rotary encoder with electronic turn count |
| 12 65535 | Reserved by DeviceNet                                         |

### 2.3.2 Scaling Function Control – Attribute 105

When *the scaling function control* attribute is set to ON (1), the *position value* attribute is converted in software to change the physical resolution of the encoder.

If this attribute is implemented and turned OFF, all functions within position sensor shall continue to use the scaled value, except the Position Value reported (attribute 102) shall be the raw, unscaled value.

The "Measuring units per revolution" and "Total measuring range in measuring units" attributes are the scaling parameters.

If scaling function control = OFF
Position value = physical resolution of device in counts
If scaling function control = ON
Postion value = physical resolution of device in counts \*
(measuring units per span[16] / Physical resolution [63])

### 2.3.3 Measuring units per revolution – Attribute 107

The "Measuring units per revolution" sets the number of distinguishable (desired) steps per unit of travel. Rotary units would contain the counts per one complete revolution. This parameter is only used for rotary units.

### 2.3.4 Total Measuring Range - Attribute 108

The parameter "Total measuring range in measuring units" sets the number of distinguishable steps over the total measuring range. This value must be less than maximum physical resolution of the device. Maximum physical resolution should be listed on the type plate. This parameter is used for rotary and linear devices.

### 2.3.5 Position measuring increment – Attribute 109

This attribute may be supported when position format [14] can be set to a value other than count (0x1001). The "Position measuring step" attribute defines the measuring step settings for the position for linear encoders. Basic position measuring step in 0.001  $\mu$ m or 0.1nanoinch is affected by attribute position format.

### 2.3.6 Preset Value – Attribute 110

The *Preset Value* supports adaption of a desired position value to an actual position value. The position value attribute is set to the "Preset value" (desired position value) by setting this attribute and the offset from the current position value is calculated and stored in the encoder.

### 2.3.7 Operating status – Attribute 111

This attribute contains the operating status of the encoder. It gives information on device internal programmed parameters.

### 2.3.8 Physical Resolution – Attribute 112

This is the physical resolution of the position sensor. For rotary encoder the number of steps per revolution can be read out. In nanometer or 0,1 ninch the measuring step is given for linear encoder.

### 2.3.9 Number of disting. revolutions – Attribute 113

With this attribute the number of distinguishable revolutions, that the position sensor device can output, is readable. For a multiturn device the number of distinguishable revolutions and the Physical resolution (Single-Turn Resolution )gives the physical measuring range to the formula below. The maximum number of distinguishable revolutions is 65535 (16 bits).

Physical Measuring range = Physical Resolution (Single-Turn resolution) \* Number of distinguishable revolutions

Remark: For Single-Turn encoder the number of distinguishable revolutions is 1.

### 2.3.10 Alarms – Attribute 114

With this attribute alarm information is provided. An alarm is set if a malfunction bit is set to logic true (high) until the alarm is cleared and the encoder is able to provide an accurate position value.

| Bit  | Description              | FALSE (0) | TRUE (1) |
|------|--------------------------|-----------|----------|
| 0    | Position error           | NO        | YES      |
| 1    | Diagnostic error         | NO        | YES      |
| 211  | Reserved by<br>DeviceNet |           |          |
| 1215 | Vendor specific          |           |          |

### 2.3.11 Supported Alarms – Attribute 115

Attribute contains information on supported alarms by the position sensor device.

| Bit  | Description              | FALSE (0)     | TRUE (1)  |
|------|--------------------------|---------------|-----------|
| 0    | Position error           | Not supported | Supported |
| 1    | Diagnostic error         | Not supported | Supported |
| 211  | Reserved by<br>DeviceNet |               |           |
| 1215 | Vendor specific          |               |           |

### 2.3.12 Alarm flag – Attribute 116

Indicates, if an alarm error occurs, depending on alarms attribute 114.

### 2.3.13 Warnings – Attribute 117

The *Warnings* attribute indicates that tolerance for certain internal parameters of the encoder have been exceeded. In contrast to *alarms*, *warnings* do not imply incorrect position values. All *warnings* are cleared if the tolerances are again within normal parameters. For the operating time limit warning (bit 3) the warning is only set again after a power-on sequence. The *Warning Flag* attribute indicates if any of the defined *warnings* are active.

| Bit   | Description                  | FALSE (0)   | TRUE (1)    |
|-------|------------------------------|-------------|-------------|
| 0     | Frequency Exceeded           | NO          | YES         |
| 1     | Light Control reserve        | Not reached | Error       |
| 2     | CPU Watchdog                 | OK Reset    | generated   |
| 3     | Operating Time Limit Warning | NO          | YES         |
| 4     | Battery charge               | OK          | Too low     |
| 5     | Reference Point              | Reached     | Not reached |
| 10-12 | Reserved by DeviceNet        |             |             |
| 13-15 | Vendor specific              |             |             |

### 2.3.14 Supported Warnings – Attribute 118

Attribute contains information on supported warnings by the position sensor device.

| Bit   | Description                  | FALSE (0)     | TRUE (1)  |
|-------|------------------------------|---------------|-----------|
| 0     | Frequency Exceeded           | Not supported | Supported |
| 1     | Light Control reserve        | Not supported | Supported |
| 2     | CPU Watchdog                 | Not supported | Supported |
| 3     | Operating Time Limit Warning | Not supported | Supported |
| 4     | Battery charge               | Not supported | Supported |
| 5     | Reference Point              | Not supported | Supported |
| 10-12 | Reserved by DeviceNet        |               |           |
| 13-15 | Vendor specific              |               |           |

### 2.3.15 Warning flag – Attribute 119

Indicates, if an warning error occurs, depending on warnings attribute 117.

### 2.3.16 Operating Time – Attribute 120

This attribute contains the *encoder operating time*. The operating time monitor stores the operating time continues to increment as long as the encoder is powered. The operating time value is presented in tenths (0.1) of an hour.

#### 2.3.17 Offset Value – Attribute 121

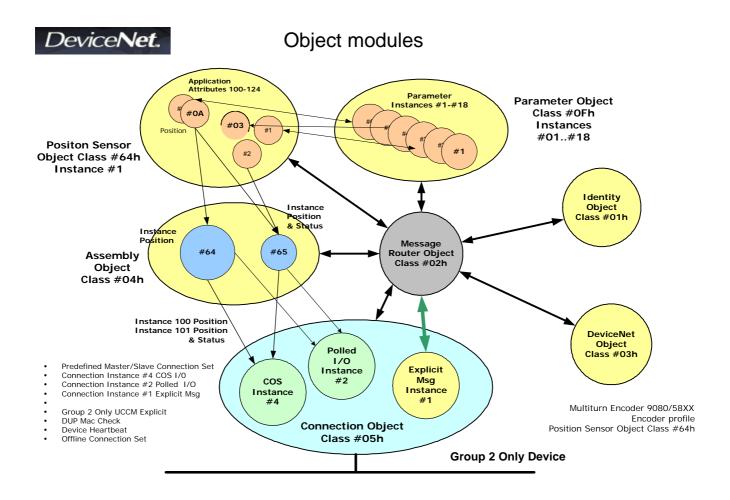
The *offset value* attribute is calculated by the preset function and shifts the *position value* attribute with the calculated value. The offset value is stored automatic by the device and can be read from the encoder for diagnostic purposes.

### 2.3.19 Min/Max Position Value – Attribute 122-123

These attributes are given in number of steps according to the basic resolution of the encoder and are located in write protected memory area only changeable by the encoder manufacturer. These values define the minimum and maximum physical measuring position within measuring range.

### 2.3.18 Serial Number – Attribute 124

This attribute gives information on the series number of the device


# 2.3.20 Diagnostic and malfunction indicator (LED's)

| State                                                                                                                           | MOD (green LED)       | NET (red LED)      |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|
| Selftest passed only activated when connected to a DeviceNet bussystem                                                          | flashrate 0.5 sec     | flashrate 0.5 sec  |
| Encoder is in Offline state Encoder has not performed the DUP_MAC_Check Encoder has no power                                    | off                   | off                |
| Encoder has made a DUP_MAC_Check<br>and is now ONLINE<br>Device needs commissioning or<br>Configuration is missing or incorrect | flashing              | off                |
| Device is in operational state I/O connection is established                                                                    | on                    | off                |
| Recoverable Fault or I/O Connection is in Timed-out state                                                                       | on <b>or</b> flashing | flashing           |
| Critical Fault or critical link failure                                                                                         | off/on                | on                 |
| Communication fault DUP_MAC_CHECK not successfull                                                                               | off                   | on                 |
| Offline Connection Set<br>Identify Comm. faulted request message                                                                | flashrate 0.25 sec    | flashrate 0.25 sec |

### 2.3.21 EDS-File and Encoder Programming

An Electronic-Data-Sheet (EDS) File is attached to the delivery program to facilitate device configuration and field installation. This file is the essential in programming with the <code>DeviceNet-Manger®</code> or <code>RSNetWorx®-tools</code>.

## 3.0 Object Model



## This object model represents an encoder device:

| Object Class    | Implementation | Number of Instances          |
|-----------------|----------------|------------------------------|
| Identity        | Required       | 1                            |
| Message Router  | Required       | 1                            |
| DeviceNet       | Required       | 1                            |
| Connection      | Required       | at least 1 - Explicit, 1 I/O |
| Assembly        | Required       | 2                            |
| Parameter       | Optional       | 18                           |
| Position Sensor | Required       | 24                           |

### 3.1 How Objects Affect Behaviour

The objects supported for the encoder affect the device's behavior as shown in the table below.

| Object          | Effect on Behavior                                            |
|-----------------|---------------------------------------------------------------|
| Identity        | Supports the reset service                                    |
| Message Router  | No effect                                                     |
| DeviceNet       | Configures port attributes                                    |
| Connection      | Contains the number of logical ports into the device          |
| Assembly        | Defines I/O data format and configuration data format         |
| Parameter       | Provides a public interface to the encoder configuration data |
| Position Sensor | Affects Position Value (attribute)                            |

### 3.2 Defining Object Interfaces

The objects supported for the encoder have the interfaces listed in the table below.

| Object          | Interface                                           |
|-----------------|-----------------------------------------------------|
| Identity        | Message Router                                      |
| Message Router  | Explicit Messaging Connection Instance              |
| DeviceNet       | Message Router                                      |
| Connection      | Message Router                                      |
| Assembly        | Message Router or I/O Connection Instance           |
| Parameter       | Message Router                                      |
| Position Sensor | Message Router, Assembly Object or Parameter Object |

### 3.3 I/O Assembly Instances

The following table identifies the I/O Assembly instances which should be supported by the encoder device.

| Number | Required /<br>Optional | Туре  | Name                                       |
|--------|------------------------|-------|--------------------------------------------|
| 100    | Required               | Input | Position Value                             |
| 101    | Optional               | Input | Position Value & Warning Flag & Alarm Flag |

### 3.4 I/O Assembly Data Attribute Format

The I/O assembly data Attributes have the format shown below.

| Instance | Byte | Bit7             | Bit6              | Bit5           | Bit4     | Bit3       | Bit2 | Bit1            | Bit0          |
|----------|------|------------------|-------------------|----------------|----------|------------|------|-----------------|---------------|
| 100      | 0    | Position         | Value LS          | ВВ             |          |            |      |                 |               |
|          | 1    |                  |                   |                |          |            |      |                 |               |
|          | 2    |                  |                   |                |          |            |      |                 |               |
|          | 3    |                  |                   |                |          |            |      |                 | MSB           |
| 101      | 0    | Position         | Value LS          | В              |          |            |      |                 |               |
|          | 1    |                  |                   |                |          |            |      |                 |               |
|          | 2    |                  |                   |                |          |            |      |                 |               |
|          | 3    |                  |                   |                |          |            |      |                 | MSB           |
|          | 4    | Optical<br>Fault | Position<br>Error | low<br>Battery | Reserved | by DeviceN | et   | Warning<br>Flag | Alarm<br>Flag |

### 3.5 Mapping I/O Assembly Data Attribute Components

The following table indicates the I/O Assembly Data Attribute mapping for the Encoder Profile.

| Data Component Name | Class              |        | Instance | Attribute        |        |
|---------------------|--------------------|--------|----------|------------------|--------|
|                     | Name               | Number | Number   | Name             | Number |
| Position Value      | Position<br>Sensor | 0x64   | 1        | Position Value   | 102    |
| Warning Flag        | Position<br>Sensor | 0x64   | 2        | Warning Flag     | 119    |
| Alarm Flag          | Position<br>Sensor | 0x64   | 2        | Alarm Flag       | 116    |
| Low Battery         | Position<br>Sensor | 0x64   | 2        | Operating Status | 111    |
| Position Error      | Position<br>Sensor | 0x64   | 2        | Operating Status | 111    |
| Optical Fault       | Position<br>Sensor | 0x64   | 2        | Operating Status | 111    |

### 3.6 Defining Device Configuration

Public access to the Position Sensor Object by the Message Router must be supported for configuration of the encoder. If supported, the optional Parameter Object may be used to access the encoder's configuration parameters. Each instance of the Parameter Object is linked to a specific configurable attribute or attributes within the Position Sensor Object.

If the Parameter Object is supported a minimum of the Parameter Stub attributes are required with the support for Full Parameter Attributes being optional.

### 3.7 Parameter Object Instances

The following table indicates the Parameter Object Instances supported by encoder devices.

| Instance | Name                                  |
|----------|---------------------------------------|
| 1        | Code Sequence                         |
| 2        | Scaling Function Control              |
| 4        | Measuring units per Revolution        |
| 5        | Total Measuring Range                 |
| 7        | Preset Value                          |
| 11       | Number of distinguishable revolutions |

### 3.8 Common Services

The Position Sensor Object provides the following common services.

| Service Code | Implementation |          | Service Name         | Description                                             |
|--------------|----------------|----------|----------------------|---------------------------------------------------------|
|              | Class          | Instance |                      |                                                         |
| Ox0E         | Conditional*   | Required | Get_Attribute_Single | Returns the contents of a single specified attribute    |
| 0x10         | Optional       | Optional | Set_Attribute_Single | Modifies a single specified attribute                   |
| 0x05         | Optional       | N/a      | Reset                | Resets all parameter values to the factory default      |
| 0x15         | Optional       | N/a      | Restore              | Restores all parameter values from non-volatile storage |
| 0x16         | Optional       | N/a      | Save                 | Saves all parameter to non-volatile                     |

### 4.0 RSNetWorx

RSNetWorx for DeviceNet, ControlNet, and EtherNet/IP provide you with many common features. Using RSNetWorx, you can:

- Browse a network automatically and determine what is present on that network via the industry-leading RSLinx communication package (the RSNetWorx installation CDROM includes RSLinx).
- Use the Electronic Data Sheet (EDS) services provided by the software to configure device parameters and to install support for new devices. The EDS subsystem enables multi-vendor interoperability on each of the networks.
- Define the input/output information exchanges that will take place on the network.
- Configure peer data exchanges (for example, controller to controller).

Most DeviceNet devices are factory commissioned with default values per the DeviceNet specification. Usually, the node address is set to 63 and the data rate is set to 125K baud. As long as the factory default parameters do not conflict with those of other devices already on the network, you can connect the new device to the network and then use the Node Commissioning tool within the RSNetWorx for DeviceNet software to change the node address and data rate. If the data rate conflicts, use a separate network to commission the device or a local connection between the device and the PC. Some devices do not support software-based node commissioning. For those devices, the product will have some alternative way (for example, thumbwheel switches), to set the address and data rate. See the specific device's documentation for more information.

### Offline mode

### Step 1 – Create a new configuration and describe your network topology

The first step in using RSNetWorx for DeviceNet in the offline mode is to create a new DeviceNet configuration (by selecting **File > New**). Once you create the configuration, an empty network displays in the Configuration view. Next, describe your network topology by dragging a device or scanner from the Hardware view and dropping it in the network configuration. Repeat this process until you have defined your entire DeviceNet network in the software. If you would like to see a tabular view of the information, select the Spreadsheet tab or the Master/Slave tab.

#### Step 2 – Configure the DeviceNet network

After creating your configuration, you can edit your network properties.

Editing network properties includes entering a network name and description.

#### Step 3 – Configure the DeviceNet devices

After configuring your DeviceNet network, you can configure the devices on the network. To configure a device, select a device in the configuration view and choose **Device > Properties** from the main menu. Configuring your devices consists of tasks like:

configuring general device properties editing and monitoring device parameters

In addition you can also view I/O message data and the contents of the EDS file.

### At various times, you may want to save the work you have

completed on your network configuration. To save a configuration file (\*.dnt), click **File > Save**.

### **Step 4 – Configure the DeviceNet scanner**

When you have completed your device configuration(s), you can then configure the scanners on your DeviceNet network. Configuring your scanner includes advanced tasks like configuring a scanlist (a list of the devices that you want the scanner to scan), and mapping device input and output data. In addition, you may also want to configure general device properties, specify module parameters (including scan-time related items), or view a summary of the scanner configuration.

### Step 5 – Save your network configuration

The final step is to save your DeviceNet configuration information to a file. To save your configuration file (\*.dnt), select **File > Save**. Your DeviceNet devices are now configured and ready to use.

You can use the RSNetWorx for DeviceNet software to further customize your DeviceNet configuration. For example, you can re-assign node addresses, modify a device's configuration, etc.

### **EDS-based devices**



RSNetWorx for DeviceNet relies on an electronic data sheets (EDS) for configuring devices. An electronic data sheet is an ASCII file that is created by the manufacturer and supplied with the device. As long as the EDS file for the device you want to configure is registered with the RSNetWorx for DeviceNet software, you can configure its properties (attributes) and how it will communicate with other devices on the DeviceNet network. Although the procedure for configuring a device is basically the same for all devices, each device will have a unique set of properties.

## **EDS** library

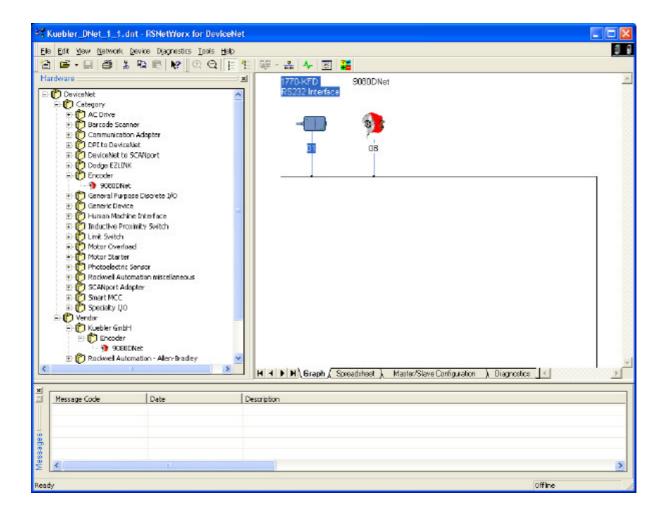


The electronic data sheet (EDS) library is a collection of EDS files that have been registered with RSNetWorx for DeviceNet. The EDS files, which are provided by the device manufacturers, contain configuration and identification information for the devices. RSNetWorx for DeviceNet software can access only those devices that have been registered. You must use the EDS Wizard for registering EDS files for unknown devices, or if you have updated EDS files to install. To access the EDS Wizard, select **Tools** > **EDS Wizard**.

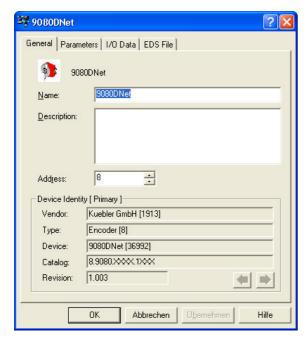
## Registration a single file



Register an unknown device with an EDS-File.


Select the file path and the named file




Change the graphic image associated with a device icon if necessary .

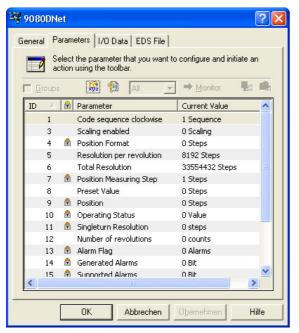
There are Bitmaps according the the specific device on the support disc.

### RSNetWorx Mainscreen



# Parameter adjustments




This is the primary device identification information as interpreted from the device file. This information includes name of the vendor, type of product, name of the device, catalog number and the firmware revision code.

Click right on the icon to get information about properties of the according device.

The address is the node address of the selected device. This address will be used throughout the RSNetWorx.

Change the MAC-Address to avoid conflict inside the DeviceNet.

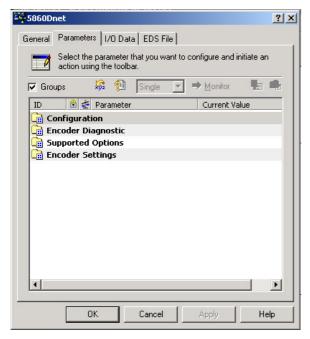
### Parameters ungrouped



The list shows the number, name and current value of each parameter of the specified device. Keep in mind, that when the lock icon follows the number, the parameter is read only.

When the scale icon follows the number, the parameter is a scaled value.

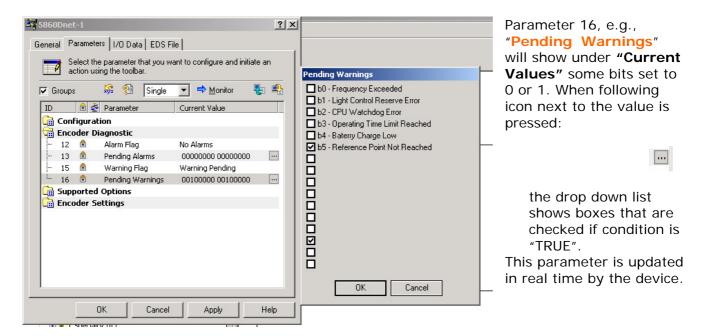
### **Upload button:**


Click this button to upload the value of the specific parameter(s) from the device to the software. You must be online to use this button. If not, the button is grayed out.

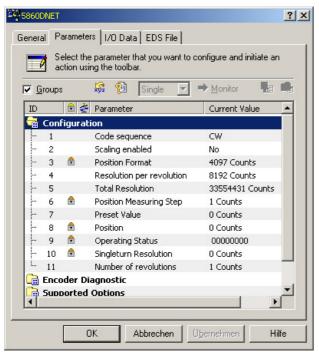
#### **Download button:**

Upload button:

Click this button to upload the value of the specific parameter(s) from the device to the software. You must be online to use this button. If not, the button is grayed out.


### Parameter Groups




Parameters are organized into groups for configuration, Diagnostic, Supported options and special Encoder settings.

These groups are determined by the EDS-file for the device.

### **Encoder Diagnostics**



### Configuration

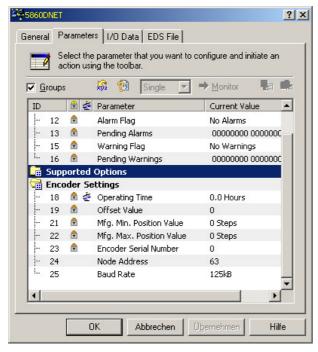


When the scaling function control attribute is set to ON (1), the *position value* attribute is converted in software to change the physical resolution of the encoder.

**Resolution per revolution** – sets the number of distinguishable (desired) steps per unit of travel. Rotary units would contain the counts per one complete revolution. This parameter is only used for rotary units.

Total Resolution - in measuring units" sets the number of distinguishable steps over the total measuring range. This value must be less than maximum physical resolution of the device. Maximum physical resolution should be listed on the type plate.

This parameter is used for rotary and linear devices.


**Preset Value -** the Preset Value supports adaption of a desired position value to an actual

position value. The position value attribute is set to the "Preset value" (desired position value) by setting this attribute and the offset from the current position value is calculated and stored in the encoder.

With this attribute the **number of distinguishable revolutions**, that the position sensor device can output, is readable. For a multiturn device the number of distinguishable revolutions and the Physical resolution (Single-Turn Resolution )gives the physical measuring range to the formula below. The maximum number of distinguishable revolutions is 65535 (16 bits).

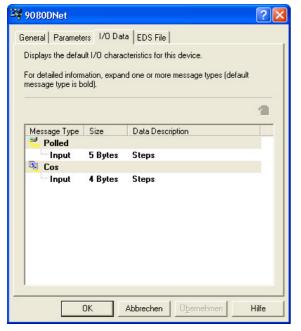
# Physical Measuring range = Physical Resolution (Single-Turn resolution) \* Number of distinguishable revolutions.

Remark: For Single-Turn encoder the number of distinguishable revolutions is 1. Encoder Settings



on the series number of the device

Operating Time – This attribute contains the encoder operating time. The operating time monitor stores the operating time continues to increment as long as the encoder is powered. The operating time value is presented in tenths (0.1) of an hour.


Offset Value – The offset value attribute is calculated by the preset function and shifts the position value attribute with the calculated value. The offset value is stored automatic by the device and can be read from the encoder for diagnostic purposes.

Min/Max Position Value – These attributes are given in number of steps according to the basic resolution of the encoder and are located in write protected memory area only changeable by the encoder manufacturer.

These values define the minimum and maximum physical measuring position within measuring range.

**Serial Number** – This attribute gives information

### I/O Data characteristics



Displays the parameter(s) that the device will use for I/O messaging.

The default message type is bold. This data, which is supplied by the manufacturer of the device, is obtained form the EDS-File.

For detailed information about the message type, expand one or more message types.

### 5.0 Technical Data

#### 5.1 Mechanical characteristics:

### **Type 9080**

Shape: round, with radial interface mounting surface

External diameter: max. 90 mm
Total length: max. 60 mm
Hollow shaft diameter: Up to 28 mm

Rotational speed: min. 1500 min-1 (for IP 65)

Protection according to

EN60529: IP65

Operating temperature range: min. -20° C up to +80° C

**Shock resistance according** 

to DIN-IEC 68-2-27: 2500 m/s2, 6 ms

Vibration resistance

according to DIN-IEC 68-2-6: 100 m/s2, 10...2000Hz

Connection type: M12 Connectorsystem for CAN-BUS and supply voltage

### **Type 5860**

Shape: round, with radial interface mounting surface

External diameter: max. 58 mm
Total length: max. 60 mm
Shaft diameter: 6 or 10 mm
Rotational speed: max. 6000 min-1

Protection according to

EN60529: IP65

Operating temperature range: min. -20° C up to +80° C

Shock resistance according

to DIN-IEC 68-2-27: 2500 m/s2, 6 ms

Vibration resistance

according to DIN-IEC 68-2-6: 100 m/s2, 10...2000Hz

Connection type: M12 Connectorsystem for CAN-BUS and supply voltage

### 5.2 Electrical characteristics

Encoder interface: DeviceNet Release 2.0 Field Bus system
Bus interface: CAN Highspeed according to ISO/DIS 11898

**Optocoupler** 

Resolution: Programmable Resolution max.25 Bit Multiturn

Physical Resolution: 13 Bit Singleturn (8192 steps) 12 Bit Multiturn (4096 steps)

Linearity: +/- ½ LSB (+/-1 LSB bei 25 Bit Multiturn)

Type of code: Binary
Position update cycle: every 1,0 ms

Supply voltage: 10-30 VDC, max.120 mA

Protocol: DeviceNet Profile for Encoder V 2.0 (partly)

based on DeviceNet Release 2.0

Programmable Resolution, Revolution, Scaling, Direction

Baudrate: 125,250,500kbit/sec

MAC-ID: settable via 6 Bit DIP-switch

Baudrate and MAC-ID fully programmable

Offline Connection Set Device Heartbeat

# Rotary Measurement Technology Absolute Encoders

# Rotary Measuring Technology Absolute Multiturn Encoder with CANopen/DeviceNet interface



### Multiturn Type 5860 CANopen/DeviceNet



#### Your benefit

- Connection via M12 connector terminal so less time is spent on connection or service
- Patented Integrative Technology means 3times greater shock resistance than is standard in the market
- Multiturn step with patented Intelligent-Sensing-Technology (I-S-T) leads to higher operating safety even under difficult operating conditions
- (Ex) available as explosion proof zone 2 and 22

# Mechanical characteristics:

| Speed <sup>1)</sup> :                        | max. 6000 min <sup>-1</sup>                     |
|----------------------------------------------|-------------------------------------------------|
| Rotor moment of inertia:                     | approx. 1,8 x 10 <sup>-6</sup> kgm <sup>2</sup> |
| Starting torque shaft version:               | < 0,01 Nm                                       |
| Load capacity of shaft am Wellenende:        | radial: 80 N, axial: 40 N                       |
| Weight:                                      | appr. 0,7 kg                                    |
| Protection acc. to EN 60 529:                | IP 65                                           |
| Working temperature:                         | −20° C +80 °C                                   |
| Operating temperature:                       | −20° C +85 °C                                   |
| Shaft:                                       | stainless steel                                 |
| Shock resistance acc. to DIN-IEC 68-2-27:    | 2500 m/s <sup>2</sup> , 6 ms                    |
| Vibration resistance acc. to DIN-IEC 68-2-6: | 100 m/s <sup>2</sup> , 10 2000 Hz               |

 $<sup>^{1)}\,</sup>$  for continous operation 3000  $\mathrm{min}^{-1}$  at the max. temperature

#### **Product features**

- CANopen according to profile DSP 406 with additional features
- DeviceNet 2.0 protocol
- Division: up to 8192 bits per revolution, up to 4096 resolutions (31 x 12 bits)
- Programmable parameters
- IP 65
- Housing diameter ø 60 mm
- Shaft ø 6 or 10 mm
- Comprehensive M12 range of accessories

# CANopen

# DeviceNet.

### **Electrical characteristics:**

| Supply voltage (U <sub>B</sub> ):                 | 10 30 V DC                                                                                              |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Current consumption:                              | max. 0,29 A                                                                                             |
| Recommended fuse:                                 | T 0,315 A                                                                                               |
| Linearity:                                        | ± 1/2 LSB (±1 LSB at resolution 13, 14, 25, 26 Bit)                                                     |
| Code:                                             | Binary                                                                                                  |
| Interface:                                        | CAN HIGH-Speed to ISO/DIS 11898, Basic and Full-CAN; CAN specification 2.0 B (11 and 29 Bit Identifier) |
| Protocols:                                        | CANopen Profil DSP 406 with additional function                                                         |
|                                                   | DeviceNet Profile for Encoder Release V 2.0                                                             |
| Rate:                                             | programmable via DIP switches 10 1000 Kbits/s                                                           |
| Basic identifier:                                 | programmable via DIP switches                                                                           |
| Conforms to CE requirements acc. to EN 50082-2, E | N 50081-2 and EN 55011 Class B and EN 61000-4-8                                                         |
| Performance against magnetic influence acc. to El | N61000-4, 5                                                                                             |
|                                                   |                                                                                                         |

# Rotary Measuring Technology Absolute Multiturn Encoder with CANopen/DeviceNet interface



### Multiturn Type 5860 CANopen/DeviceNet

# CANopen - Device Profile: General description

The CANopen Device Profiles describe the functionality of the communication and of that part of the CANopen fieldbus system specific to the manufacturer. Device Profile 406 applies to encoders and defines the individual objects independently of the manufacturer. In addition the profile makes provision for additional extended functions specific to the manufacturer; using devices that interface with CANopen offers the advantage of acquiring systems today that are prepared for the needs of the future.

#### The following functionality is integrated:

- Class C2 functionality
- NMT Slave
- Diagnostics (internal) 2 Bit
- CAN-LED for Bus status
- CAN-LED for operating mode

# The following parameters can be programmed:

- Polling mode or auto mode with adjustable time
- Direction
- Number of pulses/rotation 1 ... 8192
- Number of revolutions 1 ... 4096
- Total resolution
- Preset
- Offset

### DeviceNet Encoder Profile:

#### General description:

The DeviceNet Device Profile describes the functionality of the communication and of that part of the DeviceNet fieldbus system specific to the manufacturer. The Encoder Profile applies to encoders and defines the individual objects independently of the manufacturer. In addition the profile makes provision for additional extended functions specific to the manufacturer.

# The following parameters can be programmed:

- Direction of rotation
- Scaling factor
  - number of pulses/rotation
  - Total resolution
- Number of revolutions
- Preset value
- Diagnostics mode
- Resolution

### The following functionality is integrated:

- Galvanic isolation of the Fieldbus-stage with DC/DC converter
- · Addressing via DIP switches or software
- Diagnose-LED Netzwerk und Mode
- Baud rate 125, 250 and 500 kbit/s programmable via DIP switches
- Node address 0 ... 63 and baud rate programmable via DIP switches
- Polled mode
- · Cyclic mode
- Change of state mode (COS)
- Combination of Polled mode and Cyclic mode
- Combination of Polled mode and COS mode
- · Offline connection set
- Device heartbeat
- · "Out of box" Config
- MAC-ID and Baud rate preset value MAC-ID = 63

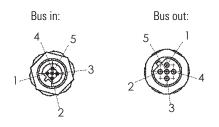
- Baud rate = 125 kBits/s
- 2 I/O Assembly
  Position value
  Position value and atatus

# Fieldbus encoders can be used in the following applications:

### CANopen:

Elevators, construction and mobile plant, cranes, agricultural vehicles, pecial-purposes vehicles.

#### DeviceNet:


especially suitable for applications in the USA.

# Rotary Measuring Technology Absolute Multiturn Encoder with CANopen/DeviceNet interface

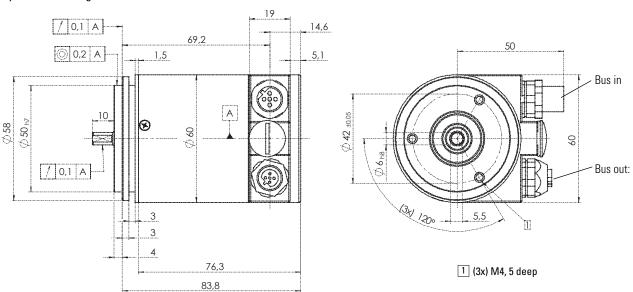


### Multiturn Typ 5860 CANopen/DeviceNet

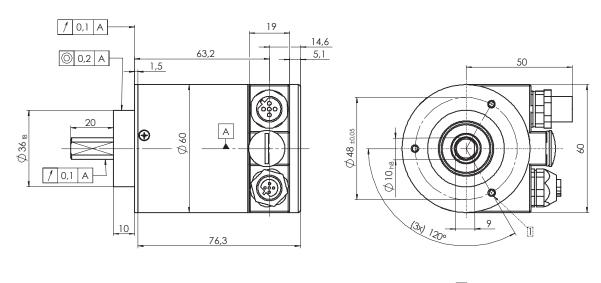
### **Terminal assignment M12:**



Bus in:


| Signal: | DRAIN | + V DC | – V DC | CAN_H | CAN_L |
|---------|-------|--------|--------|-------|-------|
| Pin:    | 1     | 2      | 3      | 4     | 5     |
|         | GY    | RD     | BK     | WH    | BU    |

Bus out:


| Signal: | DRAIN | + V DC | – V DC | CAN_H | CAN_L |
|---------|-------|--------|--------|-------|-------|
| Pin:    | 1     | 2      | 3      | 4     | 5     |
|         | GY    | RD     | BK     | WH    | BU    |

### Dimension:

### Synchronous flange



### Clamping flange



1 (3x) M3, 5 deep

# Rotary Measurement Technology Absolute Encoders

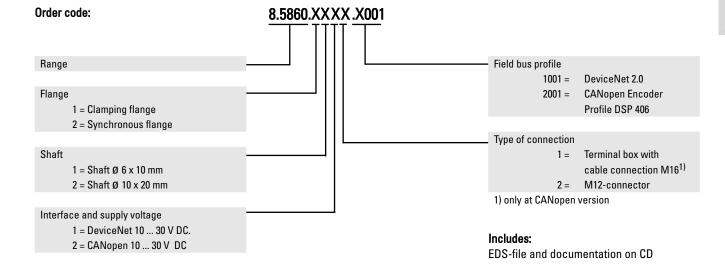
## Rotary Measuring Technology Absolute Multiturn Encoder with CANopen/DeviceNet interface



### Multiturn Type 5860 CANopen/DeviceNet

Kübler is working consistently **at high integration of all units** and intelligent sensing systems. The basics of our encoders are two patented technologies:

# Patended "Integrated Technology®" uses single board construction, deliberate assembly techniques, and two ASIC design:


- Shock up to 250gs
- Higher vibration specs and thermal shock performance
- Lower parts count, elimination of potentiometers
- Higher resistance to EMI

# Electronic multiturn increases performance, eliminates gears

- Reliability No backlash errors, resistant to EMI, lower parts count
- Higher life No mechanical wear, lower internal temperature
- Higher performance Higher operating speeds
- Lower profile compact size, hollow shaft
- Economical Lower cost

### Patended "Intelligent Sensing Technology®"

- Multiturn design that protects encoder from EMI.
- The battery outlasts both application requirements and system components (LEDs & bearings)
- Redundant multiturn sensors and counters increase reliability & life
- Active system output monitoring using digital filters to compare data to logical & target bits.



# Rotary Measuring Technology Absolute Multiturn Encoder with CANopen/DeviceNet interface



### Multiturn Type 9080 CANopen/DeviceNet



#### Your benefit

- Only 60 mm clearance needed
- · Patended integrative technology
- Very easy mounting of the hollow shaft version. The encoder is mounted directly on the drive shaft without coupling. This saves up to 30 % cost and 50 % clearance compared to shaft versions.
- Divisions: up to 8192 (13 bits) per revolution, 4096 (12 bits) revolutions
- Contactless multiturn gear with new Intelligent-Sensing-Technology (IST)

- Simply connection patent pending connecting system with removable socket box
- Protection: IP 65

#### **Product features**

- CANopen according to profile DSP 406 with additional features
- DeviceNet 2.0 protocol
- Divisions: up to 8192 Bit/U, up to 4096 U. (13x12 bit)
- IP 65
- Extensive M12 accessories program
- (Ex) available as explosion proof zone 2 and 22

# CANopen DeviceNet.

### Mechanical characteristics:

| Speed: 1)                                            | max. 6000 min <sup>-1</sup>                  |
|------------------------------------------------------|----------------------------------------------|
| Rotor moment of inertia:                             | appr. 72 x 10 <sup>-6</sup> kgm <sup>2</sup> |
| Starting torque shaft hollow shaft version :         | < 0,2 Nm                                     |
| Starting torque shaft shaft version :                | < 0,05 Nm                                    |
| Load capacity of shaft (bei Vollwelle) <sup>2)</sup> | radial: 80 N, axial 40 N                     |
| Weight:                                              | appr. 0,9 kg                                 |
| Protection acc. to EN 60 529:                        | IP 65                                        |
| Working temperature:                                 | −10° C +70 °C                                |
| Operating temperature:                               | −20° C +80 °C                                |
| Shaft:                                               | stainless steel                              |
| Shock resistance acc. to DIN-IEC 68-2-27:            | 2500 m/s <sup>2</sup> , 6 ms                 |
| Vibration resistance acc. to DIN-IEC 68-2-6:         | 100 m/s <sup>2</sup> , 10 2000 Hz            |
|                                                      |                                              |

<sup>1)</sup> for continuous operation 3000 min-1

### **Electrical characteristics:**

| Supply voltage (UB):                                                                          | 10 30 V DC                                          |  |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| Current consumption:                                                                          | max. 0,29 A                                         |  |  |
| recommended fuse:                                                                             | T 0,315 A                                           |  |  |
| Linearity:                                                                                    | ± 1/2 LSB (±1 LSB at Resolution 13, 14, 25, 26 Bit) |  |  |
| Codeart:                                                                                      | Binary                                              |  |  |
| Interface:                                                                                    | CAN HIGH-Speed to ISO/DIS 11898, Basic and          |  |  |
|                                                                                               | Full-CAN; CAN-specification 2.0 B (11 and 29 Bit    |  |  |
|                                                                                               | Identifier                                          |  |  |
| Protocol:                                                                                     | CANopen to Profil DSP 406                           |  |  |
|                                                                                               | DeviceNet Profile for Encoder Release V 2.0         |  |  |
| Rate:                                                                                         | programmable via DIP switches 10 1000 Kbits/s       |  |  |
| Basic identifier/node:                                                                        | programmable via DIP switches                       |  |  |
| Conforms to CE requirements acc. to EN 50082-2, EN 50081-2, EN 55011 Class B and EN 61000-4-8 |                                                     |  |  |
| D ( ) ( ) ( ) ( ) ( ) ( )                                                                     | NC1000 4 F                                          |  |  |
| Performance against magnetic influence acc. to El                                             | No 1000-4, 5                                        |  |  |

<sup>2)</sup> shaft version only (at shaft end)

# Rotary Measurement Technology Absolute Encoders

# Rotary Measuring Technology Absolute Multiturn Encoder with CANopen/DeviceNet interface



### Multiturn Type 9080 CANopen/DeviceNet

# CANopen - Device Profile: General description

The CANopen Device Profiles describe the functionality of the communication and of that part of the CANopen fieldbus system specific to the manufacturer. Device Profile 406 applies to encoders and defines the individual objects independently of the manufacturer. In addition the profile makes provision for additional extended functions specific to the manufacturer; using devices that interface with CANopen offers the advantage of acquiring systems today that are prepared for the needs of the future.

#### The following functionality is integrated:

- Class C2 functionality
- NMT Slave
- Diagnostics (internal) 2 Bit
- CAN-LED for Bus status
- CAN-LED for operating mode

# The following parameters can be programmed:

- Polling mode or auto mode with adjustable time
- Direction
- Number of pulses/rotation 1 ... 8192
- Number of revolutions 1 ... 4096
- Total resolution
- Preset
- Offset

### DeviceNet Encoder Profile:

#### **General description:**

The DeviceNet Device Profile describes the functionality of the communication and of that part of the DeviceNet fieldbus system specific to the manufacturer. The Encoder Profile applies to encoders and defines the individual objects independently of the manufacturer. In addition the profile makes provision for additional extended functions specific to the manufacturer.

# The following parameters can be programmed:

- Direction of rotation
- Scaling factor
  - number of pulses/rotation
  - Total resolution
- Number of revolutions
- Preset value
- Diagnostics mode
- Resolution

### The following functionality is integrated:

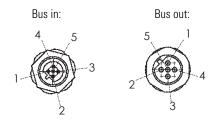
- Galvanic isolation of the Fieldbus-stage with DC/DC converter
- · Addressing via DIP switches or software
- Diagnose-LED Netzwerk und Mode
- Baud rate 125, 250 and 500 kbit/s programmable via DIP switches
- Node address 0 ... 63 and baud rate programmable via DIP switches
- Polled mode
- · Cyclic mode
- Change of state mode (COS)
- Combination of Polled mode and Cyclic mode
- Combination of Polled mode and COS mode
- Offline connection set
- Device heartbeat
- · "Out of box" Config
- MAC-ID and Baud rate preset value MAC-ID = 63

- Baud rate = 125 kBits/s
  - 2 I/O Assembly
    Position value
    Position value and atatus

Fieldbus encoders can be used in the following applications:

### CANopen:

Elevators, construction and mobile plant, cranes, agricultural vehicles, pecial-purposes vehicles.


### DeviceNet:

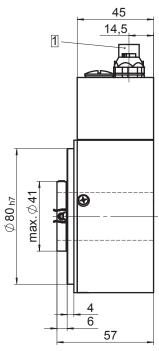
especially suitable for applications in the USA.

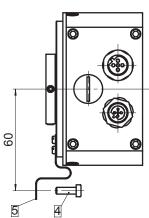
# Rotary Measuring Technology Absolute Multiturn Encoder with CANopen/DeviceNet interface

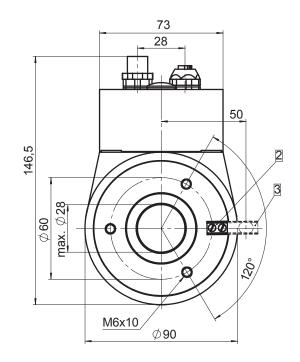


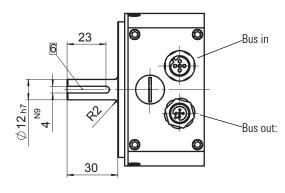
### Multiturn Type 9080 DeviceNet







| Signal: | DRAIN | + V DC | - V DC | CAN_H | CAN_L |
|---------|-------|--------|--------|-------|-------|
| Pin:    | 1     | 2      | 3      | 4     | 5     |
|         | GY    | RD     | ВК     | WH    | BU    |


Bus out:


| Signal: | DRAIN | + V DC | - V DC | CAN_H | CAN_L |
|---------|-------|--------|--------|-------|-------|
| Pin:    | 1     | 2      | 3      | 4     | 5     |
|         | GY    | RD     | BK     | WH    | BU    |

### Dimension (M12 connector version):



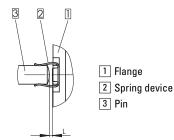




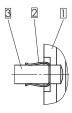


- 1 M12 Connectors/Coupling
- 2 Spring device for pin acc. to DIN 6325 Ø6
- 3 Spring device short (Flange No. 2)
- 4 Spring device long (Flange No. 3)
- 5 Slotted hole for screw M4
- 6 Mounting bracket (Flange No. 4)
- 7 2,5 mm deep

# Rotary Measuring Technology Absolute Multiturn Encoder with CANopen/DeviceNet interface




### Multiturn Type 9080 CANopen/DeviceNet


### Max. permissible drive shaft impact

| Type of flange:                     | Permissible axial impact | Permissible radial impact | Perm. angular play |
|-------------------------------------|--------------------------|---------------------------|--------------------|
| Flange Typ 2 (Spring device short): | max. ±1 mm <sup>1)</sup> | max. ±0,3 mm              | max. ±2°           |
| Flange Typ 3 (Spring device long):  | ∞2)                      | max. ±0,3 mm              | max. ±2°           |
| Flange Typ 4 (Mounting bracket):    | max. ±0,5 mm             | max. ±0,3 mm              | max. ±2°           |
|                                     |                          |                           |                    |

1)When mounting the encoder make sure that the dimension L<sub>min.</sub> is larger than the maximum axial play of the drive in the direction of the arrow. Danger of mechanical collision!

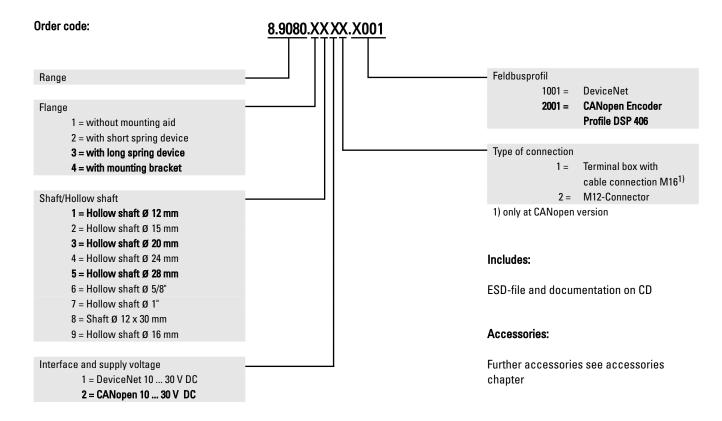


2)Pin through hoe of spring device



- 1 Flange
- 2 Spring device
- 3 Pin

# Patended "Integrated Technology®" uses single board construction, deliberate assembly techniques, and two ASIC design:


- Shock up to 250gs
- Higher vibration specs and thermal shock performance
- Lower parts count, elimination of potentiometers
- Higher resistance to EMI

# Electronic multiturn increases performance, eliminates gears

- Reliability No backlash errors, resistant to EMI, lower parts count
- Higher life No mechanical wear, lower internal temperature
- Higher performance Higher operating speeds
- Lower profile compact size, hollow shaft
- Economical Lower cost

### Patended "Intelligent Sensing Technology®"

- Multiturn design that protects encoder from.
- The battery outlasts both application requirements and system components (LEDs & bearings)
- Redundant multiturn sensors and counters increase reliability & life
- Active system output monitoring using digital filters to compare data to logical & target bits.





Fritz Kübler GmbH
Zähl- und Sensortechnik
P.O. BOX 3440
D-78023 Villingen-Schwenningen
GERMANY
Tel: +49 (0) 77 20 - 39 03 - 0
Fax +49 (0) 77 20 - 2 15 64
sales@kuebler.com

www@kuebler.com